First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties

We report our first discoveries of high-redshift supernovae from the Subaru HIgh-Z sUpernova CAmpaign (SHIZUCA), a transient survey using Subaru/Hyper Suprime-Cam. We report the discovery of three supernovae at spectroscopically-confirmed redshifts of 2.399 (HSC16adga), 1.965 (HSC17auzg), and 1.851 (HSC17dbpf), and two supernova candidates with host-galaxy photometric redshifts of 3.2 (HSC16apuo) and 4.2 (HSC17dsid), respectively. In this paper, we present their photometric properties and the spectroscopic properties of the confirmed high-redshift supernovae are presented in the accompanying paper Curtin et al. (2018). The supernovae with the confirmed redshifts of z ~ 2 have rest ultraviolet peak magnitudes of around -21 mag, which make them superluminous supernovae. The discovery of three supernovae at z ~ 2 roughly corresponds to an event rate of ~ 900 Gpc-3 yr-1, which is already consistent with the total superluminous supernova rate estimated by extrapolating the local rate based on the cosmic star-formation history. Adding unconfirmed superluminous supernova candidates would increase the event rate. Our superluminous supernova candidates at the redshifts of around 3 and 4 indicate minimum superluminous supernova rates of ~ 400 Gpc-3 yr-1 (z ~ 3) and ~ 500 Gpc-3 yr-1 (z ~ 4). Because we have only performed a pilot search for high-redshift supernovae so far and have not completed selecting all the high-redshift supernova candidates, these rates are lower limits. Our initial results demonstrate the amazing capability of Hyper Suprime-Cam to discover high-redshift supernovae.

[1]  Karl Glazebrook,et al.  Marz: Manual and automatic redshifting software , 2016, Astron. Comput..

[2]  M. Dickinson,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .

[3]  R. Nichol,et al.  DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP , 2015, 1512.06043.

[4]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[5]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[6]  Masayuki Tanaka,et al.  PHOTOMETRIC REDSHIFT WITH BAYESIAN PRIORS ON PHYSICAL PROPERTIES OF GALAXIES , 2015, 1501.02047.

[7]  K. Maguire,et al.  On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.

[8]  P. Astier,et al.  TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.

[9]  A. Gal-yam The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.

[10]  A. M. S. Oderberg,et al.  Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .

[11]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[12]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z ≃ 4 , 2011, 1111.5102.

[13]  Large structures and galaxy evolution in COSMOS at z < 1.1 , 2006, astro-ph/0612384.

[14]  J. Cooke,et al.  Detection of a possible superluminous supernova in the Epoch of Reionization. , 2017, Science bulletin.

[15]  S. Djorgovski,et al.  DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz , 2009, 0908.1990.

[16]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[17]  A. Gal-yam Luminous Supernovae , 2012, Science.

[18]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[19]  R. Chevalier,et al.  Superluminous Supernovae , 2018, Space Science Reviews.

[20]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[21]  E. L. Robinson,et al.  SN 2008am: A SUPER-LUMINOUS TYPE IIn SUPERNOVA , 2011, 1101.3581.

[22]  R. Nichol,et al.  Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two , 2017, 1712.04535.

[23]  M. Sullivan,et al.  Type IIn supernovae at redshift z ≈ 2 from archival data , 2009, Nature.

[24]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[25]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[26]  Survey for Galaxies Associated with z ~ 3 Damped Lyα Systems. II. Galaxy-Absorber Correlation Functions , 2006, astro-ph/0607149.

[27]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[28]  P. Brown,et al.  Far-UV HST Spectroscopy of an Unusual Hydrogen-poor Superluminous Supernova: SN2017egm , 2017, 1711.01534.

[29]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[30]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[31]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[32]  R. Nichol,et al.  DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.

[33]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[34]  M. Sullivan,et al.  Euclid: Superluminous supernovae in the Deep Survey , 2017, 1710.09585.

[35]  E. Ofek,et al.  Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory , 2017, 1704.05061.

[36]  J. Sollerman,et al.  Optical and Ultraviolet Spectroscopy of SN 1995N: Evidence for Strong Circumstellar Interaction , 2001, astro-ph/0108149.

[37]  S. Cenko,et al.  What powers the 3000-day light curve of SN 2006gy? , 2015, 1509.06407.

[38]  M. Sullivan,et al.  The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.

[39]  E. Berger,et al.  The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT , 2017, 1706.00825.

[40]  J. Prieto,et al.  Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy , 2017, 1708.00864.

[41]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[42]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[43]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[44]  S. Gezari,et al.  AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li , 2016, 1601.03331.

[45]  Lee D. Feinberg,et al.  First Results from the Space Telescope Imaging Spectrograph: Optical Spectra of Gliese 229B , 1997, Optics & Photonics.

[46]  A. Fruchter,et al.  A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae , 2016, 1601.01874.

[47]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[48]  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview* , 2002, astro-ph/0210314.

[49]  Hubble Space Telescope and ground-based observations of SN 1993J and SN 1998S: CNO processing in the progenitors , 2004, astro-ph/0409439.

[50]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[51]  E. O. Ofek,et al.  SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006 .

[52]  H Germany,et al.  Spectrum formation in superluminous supernovae (Type I) , 2016, 1603.00388.

[53]  L. Zampieri,et al.  ULTRAVIOLET SPECTROSCOPY OF SUPERNOVAE: THE FIRST TWO YEARS OF SWIFT OBSERVATIONS , 2009, 0906.0367.

[54]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[55]  Nozomu Tominaga,et al.  First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh- Z SUpernova CAmpaign (SHIZUCA). I. Photometric Properties , 2019, The Astrophysical Journal Supplement Series.

[56]  E. Ofek,et al.  Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd , 2016, 1611.02782.

[57]  Kyle L. Luther,et al.  The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22 , 2017, The Astrophysical Journal.

[58]  Andrew J. Connolly,et al.  The LSST Data Management System , 2015, 1512.07914.

[59]  S. Smartt,et al.  ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.

[60]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[61]  Max Pettini Alice E. Shapley Charles C. Steidel Jean-G Giavalisco The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics* , 2001 .

[62]  M. Sullivan,et al.  Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2018, 1802.07820.

[63]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[64]  E. Bellm,et al.  The unblinking eye on the sky , 2017, Nature Astronomy.

[65]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[66]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[67]  J. Sollerman,et al.  HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS , 2013, 1312.6617.

[68]  N. Panagia Ultraviolet Observations of Supernovae , 2007, 0704.1666.

[69]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[70]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.

[71]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[72]  SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.

[73]  D. Malesani,et al.  Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.