First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties
暂无分享,去创建一个
Nozomu Tominaga | Naoki Yasuda | Jeff Cooke | Giuliano Pignata | Robert M. Quimby | Tomoki Morokuma | Chien-Hsiu Lee | Ken'ichi Nomoto | T. Pritchard | Masayuki Tanaka | N. Yasuda | L. Galbany | N. Suzuki | T. Morokuma | N. Tominaga | R. Quimby | S. Bernard | G. Pignata | Masaomi Tanaka | Chien-Hsiu Lee | J. Cooke | T. Moriya | K. Maeda | C. Curtin | Masaomi Tanaka | Masayuki Tanaka | Takashi J. Moriya | Ji-an Jiang | Keiichi Maeda | Nao Suzuki | Ichiro Takahashi | Masaki Yamaguchi | Stephanie R. Bernard | Chris Curtin | Lluis Galbany | Tyler Pritchard | K. Nomoto | I. Takahashi | Jiachen Jiang | M. Yamaguchi | L. Galbany
[1] Karl Glazebrook,et al. Marz: Manual and automatic redshifting software , 2016, Astron. Comput..
[2] M. Dickinson,et al. Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .
[3] R. Nichol,et al. DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP , 2015, 1512.06043.
[4] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[5] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[6] Masayuki Tanaka,et al. PHOTOMETRIC REDSHIFT WITH BAYESIAN PRIORS ON PHYSICAL PROPERTIES OF GALAXIES , 2015, 1501.02047.
[7] K. Maguire,et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.
[8] P. Astier,et al. TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.
[9] A. Gal-yam. The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.
[10] A. M. S. Oderberg,et al. Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .
[11] M. Giavalisco,et al. Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.
[12] R. Ellis,et al. KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z ≃ 4 , 2011, 1111.5102.
[13] Large structures and galaxy evolution in COSMOS at z < 1.1 , 2006, astro-ph/0612384.
[14] J. Cooke,et al. Detection of a possible superluminous supernova in the Epoch of Reionization. , 2017, Science bulletin.
[15] S. Djorgovski,et al. DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz , 2009, 0908.1990.
[16] A. K. Inoue,et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.
[17] A. Gal-yam. Luminous Supernovae , 2012, Science.
[18] M. Giavalisco,et al. A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.
[19] R. Chevalier,et al. Superluminous Supernovae , 2018, Space Science Reviews.
[20] Song Huang,et al. The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.
[21] E. L. Robinson,et al. SN 2008am: A SUPER-LUMINOUS TYPE IIn SUPERNOVA , 2011, 1101.3581.
[22] R. Nichol,et al. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two , 2017, 1712.04535.
[23] M. Sullivan,et al. Type IIn supernovae at redshift z ≈ 2 from archival data , 2009, Nature.
[24] E. al.,et al. Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.
[25] Alexei V. Filippenko,et al. Optical spectra of supernovae , 1997 .
[26] Survey for Galaxies Associated with z ~ 3 Damped Lyα Systems. II. Galaxy-Absorber Correlation Functions , 2006, astro-ph/0607149.
[27] J. Wheeler,et al. Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.
[28] P. Brown,et al. Far-UV HST Spectroscopy of an Unusual Hydrogen-poor Superluminous Supernova: SN2017egm , 2017, 1711.01534.
[29] M. Pettini,et al. A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.
[30] J. Neill,et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.
[31] David O. Jones,et al. Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.
[32] R. Nichol,et al. DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.
[33] Yukiko Kamata,et al. First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.
[34] M. Sullivan,et al. Euclid: Superluminous supernovae in the Deep Survey , 2017, 1710.09585.
[35] E. Ofek,et al. Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory , 2017, 1704.05061.
[36] J. Sollerman,et al. Optical and Ultraviolet Spectroscopy of SN 1995N: Evidence for Strong Circumstellar Interaction , 2001, astro-ph/0108149.
[37] S. Cenko,et al. What powers the 3000-day light curve of SN 2006gy? , 2015, 1509.06407.
[38] M. Sullivan,et al. The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.
[39] E. Berger,et al. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT , 2017, 1706.00825.
[40] J. Prieto,et al. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy , 2017, 1708.00864.
[41] Yen-Ting Lin,et al. Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.
[42] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[43] M. Pettini,et al. Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.
[44] S. Gezari,et al. AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li , 2016, 1601.03331.
[45] Lee D. Feinberg,et al. First Results from the Space Telescope Imaging Spectrograph: Optical Spectra of Gliese 229B , 1997, Optics & Photonics.
[46] A. Fruchter,et al. A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae , 2016, 1601.01874.
[47] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[48] Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview* , 2002, astro-ph/0210314.
[49] Hubble Space Telescope and ground-based observations of SN 1993J and SN 1998S: CNO processing in the progenitors , 2004, astro-ph/0409439.
[50] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[51] E. O. Ofek,et al. SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006 .
[52] H Germany,et al. Spectrum formation in superluminous supernovae (Type I) , 2016, 1603.00388.
[53] L. Zampieri,et al. ULTRAVIOLET SPECTROSCOPY OF SUPERNOVAE: THE FIRST TWO YEARS OF SWIFT OBSERVATIONS , 2009, 0906.0367.
[54] Larry Denneau,et al. The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.
[55] Nozomu Tominaga,et al. First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh- Z SUpernova CAmpaign (SHIZUCA). I. Photometric Properties , 2019, The Astrophysical Journal Supplement Series.
[56] E. Ofek,et al. Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd , 2016, 1611.02782.
[57] Kyle L. Luther,et al. The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22 , 2017, The Astrophysical Journal.
[58] Andrew J. Connolly,et al. The LSST Data Management System , 2015, 1512.07914.
[59] S. Smartt,et al. ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.
[60] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[61] Max Pettini Alice E. Shapley Charles C. Steidel Jean-G Giavalisco. The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics* , 2001 .
[62] M. Sullivan,et al. Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2018, 1802.07820.
[63] M. Giavalisco,et al. The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.
[64] E. Bellm,et al. The unblinking eye on the sky , 2017, Nature Astronomy.
[65] S. Smartt,et al. HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.
[66] A. Kinney,et al. Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .
[67] J. Sollerman,et al. HIGH-DENSITY CIRCUMSTELLAR INTERACTION IN THE LUMINOUS TYPE IIn SN 2010jl: THE FIRST 1100 DAYS , 2013, 1312.6617.
[68] N. Panagia. Ultraviolet Observations of Supernovae , 2007, 0704.1666.
[69] D. Malesani,et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.
[70] Jeff Cooke,et al. Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.
[71] Ryan Chornock,et al. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.
[72] SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.
[73] D. Malesani,et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.