Mapping pQTLs of circulating inflammatory proteins identifies drivers of immune-related disease risk and novel therapeutic targets

The SCALLOP consortium. Jing Hua Zhao1,2,35, David Stacey1,2,35, Niclas Eriksson3, Erin MacdonaldDunlop4, Åsa K Hedman5,6, Anette Kalnapenkis7,8, Stefan Enroth9, Domenico Cozzetto10, Jonathan Digby-Bell10, Jonathan Marten1, Lasse Folkersen11, Christian Herder12,13,14, Lina Jonsson15, Sarah E Bergen16, Christian Geiger17,18, Elise J Needham1,2, Praveen Surendran1,19,20,21, Estonian Biobank Research Team7, Dirk S Paul1,19, Ozren Polasek22, Barbara Thorand14,17, Harald Grallert14,17,18, Michael Roden12,13,14, Urmo Võsa7, Tonu Esko7, Caroline Hayward23, Åsa Johansson9, Ulf Gyllensten9, Nicholas Powell10, Oskar Hansson24,25, Niklas Mattsson-Carlgren26, Peter K Joshi4, John Danesh1,2,19,20,27,28, Leonid Padyukov29,30, Lars Klareskog29,30, Mikael Landén15,31, James F Wilson4,23, Agneta Siegbahn32, Lars Wallentin32, Anders Mälarstig5,6, Adam S Butterworth1,2,19,20,33,36, James E Peters1,20,34,36

[1]  Philip S. Insel,et al.  The genetic regulation of protein expression in cerebrospinal fluid , 2022, EMBO molecular medicine.

[2]  Graham M Lord,et al.  Interleukin-22 regulates neutrophil recruitment in ulcerative colitis and is associated with resistance to ustekinumab therapy , 2022, Nature Communications.

[3]  Benjamin B. Sun,et al.  Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants , 2022, bioRxiv.

[4]  E. Boerwinkle,et al.  Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies , 2022, Nature Genetics.

[5]  Bjarni V. Halldórsson,et al.  Large-scale integration of the plasma proteome with genetics and disease , 2021, Nature Genetics.

[6]  A. Hingorani,et al.  Synergistic insights into human health from aptamer- and antibody-based proteomic profiling , 2021, Nature Communications.

[7]  M. Jackson,et al.  IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies , 2021, Nature Medicine.

[8]  E. Gamazon,et al.  Mapping the proteo-genomic convergence of human diseases , 2021, Science.

[9]  Andrew D. Yates,et al.  A compendium of uniformly processed human gene expression and splicing quantitative trait loci , 2021, Nature Genetics.

[10]  J. Spitsbergen,et al.  GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries , 2021, Neural regeneration research.

[11]  Sina A. Gharib,et al.  Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression , 2021, Nature Genetics.

[12]  S. Yusuf,et al.  Multiplex protein screening of biomarkers associated with major bleeding in patients with atrial fibrillation treated with oral anticoagulation , 2021, Journal of thrombosis and haemostasis : JTH.

[13]  M. Neurath,et al.  Reframing Immune-Mediated Inflammatory Diseases through Signature Cytokine Hubs. , 2021, The New England journal of medicine.

[14]  S. Yusuf,et al.  Using multimarker screening to identify biomarkers associated with cardiovascular death in patients with atrial fibrillation , 2021, Cardiovascular research.

[15]  N. Wareham,et al.  Impact of cholesterol on proinflammatory monocyte production by the bone marrow , 2021, European heart journal.

[16]  J. Lamb,et al.  A genome-wide association study of serum proteins reveals shared loci with common diseases , 2021, bioRxiv.

[17]  L. Peyrin-Biroulet,et al.  The Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) framework , 2021, Nature Computational Science.

[18]  Andrew A. White,et al.  CTLA-4 blockade and interferon-α induce proinflammatory transcriptional changes in the tumor immune landscape that correlate with pathologic response in melanoma. , 2021, PloS one.

[19]  H. Yasuda Discovery of the RANKL/RANK/OPG system , 2021, Journal of Bone and Mineral Metabolism.

[20]  C. Held,et al.  Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study , 2021, PLoS medicine.

[21]  S. Yusuf,et al.  Screening of Multiple Biomarkers Associated With Ischemic Stroke in Atrial Fibrillation , 2020, Journal of the American Heart Association.

[22]  Nadezhda T. Doncheva,et al.  The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets , 2020, Nucleic Acids Res..

[23]  E. McDonagh,et al.  Open Targets Platform: supporting systematic drug–target identification and prioritisation , 2020, Nucleic Acids Res..

[24]  J. Danesh,et al.  Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals , 2020, Nature Metabolism.

[25]  C. Ponting,et al.  Linking protein to phenotype with Mendelian Randomization detects 38 proteins with causal roles in human diseases and traits , 2020, PLoS genetics.

[26]  William J. Astle,et al.  Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations , 2020, Cell.

[27]  Mark I. McCarthy,et al.  A brief history of human disease genetics , 2020, Nature.

[28]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[29]  Simon C. Potter,et al.  Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility , 2019, Science.

[30]  S. Targan,et al.  Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. , 2019, The New England journal of medicine.

[31]  Y. Bossé,et al.  A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity , 2019, npj Genomic Medicine.

[32]  Stephen Burgess,et al.  PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations , 2019, Bioinform..

[33]  Stephen Burgess,et al.  A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits , 2019, Nature Communications.

[34]  M. McCarthy,et al.  Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases , 2019, Nature Genetics.

[35]  N. Amariglio,et al.  The Duffy antigen receptor for chemokines, ACKR1,– ‘Jeanne DARC’ of benign neutropenia , 2018, British journal of haematology.

[36]  L. Zon,et al.  AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate , 2019, Science.

[37]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[38]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[39]  David Stacey,et al.  ProGeM: a framework for the prioritization of candidate causal genes at molecular quantitative trait loci , 2018, Nucleic acids research.

[40]  B. Baune,et al.  Targeted proteomic analysis of cognitive dysfunction in remitted major depressive disorder: Opportunities of multi-omics approaches towards predictive, preventive, and personalized psychiatry. , 2018, Journal of proteomics.

[41]  Kenneth G. C. Smith,et al.  Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease , 2018, PLoS genetics.

[42]  Xia Yang,et al.  Co-regulatory networks of human serum proteins link genetics to disease , 2018, Science.

[43]  W. Rathmann,et al.  A Systemic Inflammatory Signature Reflecting Cross Talk Between Innate and Adaptive Immunity Is Associated With Incident Polyneuropathy: KORA F4/FF4 Study , 2018, Diabetes.

[44]  Stephen Burgess,et al.  Genomic atlas of the human plasma proteome , 2018, Nature.

[45]  R. DiMarchi,et al.  Molecular elements in FGF19 and FGF21 defining KLB/FGFR activity and specificity , 2018, Molecular metabolism.

[46]  J. Danesh,et al.  Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors , 2017, The Lancet.

[47]  David J. Winter,et al.  rentrez: An R package for the NCBI eUtils API , 2017, R J..

[48]  Robert M. Maier,et al.  Causal associations between risk factors and common diseases inferred from GWAS summary data , 2017, Nature Communications.

[49]  Xuefeng Yin,et al.  CD40L-Dependent Pathway Is Active at Various Stages of Rheumatoid Arthritis Disease Progression , 2017, The Journal of Immunology.

[50]  M. Croft,et al.  Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases , 2017, Nature Reviews Rheumatology.

[51]  C. Oury,et al.  The Dual Role of Neutrophils in Inflammatory Bowel Diseases , 2016, Journal of clinical medicine.

[52]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[53]  Christian Gieger,et al.  Connecting genetic risk to disease end points through the human blood plasma proteome , 2016, Nature Communications.

[54]  E. Regan,et al.  Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD , 2016, PLoS genetics.

[55]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[56]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[57]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[58]  Kenneth G. C. Smith,et al.  Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease , 2016, PLoS genetics.

[59]  Michail I. Papafaklis,et al.  Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21. , 2015, American journal of physiology. Heart and circulatory physiology.

[60]  R. Mägi,et al.  Cohort Profile Cohort Profile : Estonian Biobank of the Estonian Genome Center , University of Tartu , 2015 .

[61]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[62]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[63]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[64]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[65]  D. Nickerson,et al.  A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians , 2014, bioRxiv.

[66]  Jonathan Mant,et al.  The INTERVAL trial to determine whether intervals between blood donations can be safely and acceptably decreased to optimise blood supply: study protocol for a randomised controlled trial , 2014, Trials.

[67]  Ulf Gyllensten,et al.  Strong effects of genetic and lifestyle factors on biomarker variation and use of personalized cutoffs , 2014, Nature Communications.

[68]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[69]  Jacob D. Jaffe,et al.  Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense , 2014, Proceedings of the National Academy of Sciences.

[70]  J. Stenvang,et al.  Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability , 2014, PloS one.

[71]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[72]  R. Andrews,et al.  Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression , 2014, Science.

[73]  Manolis Kellis,et al.  Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells , 2014, Science.

[74]  J. DeVoss,et al.  A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3 , 2014, Nature.

[75]  P. Rutgeerts,et al.  Correlation Between the Endoscopic and Histologic Score in Assessing the Activity of Ulcerative Colitis , 2013, Inflammatory bowel diseases.

[76]  Daniel F. Freitag,et al.  Functional IL6R 358Ala Allele Impairs Classical IL-6 Receptor Signaling and Influences Risk of Diverse Inflammatory Diseases , 2013, PLoS genetics.

[77]  Magda Tsolaki,et al.  Identification of cis-regulatory variation influencing protein abundance levels in human plasma. , 2012, Human molecular genetics.

[78]  Calliope A. Dendrou,et al.  TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis , 2012, Nature.

[79]  C. Parkos,et al.  The role of neutrophils during intestinal inflammation , 2012, Mucosal Immunology.

[80]  S. Ladas,et al.  High intestinal and systemic levels of decoy receptor 3 (DcR3) and its ligand TL1A in active ulcerative colitis. , 2010, Clinical immunology.

[81]  Rafael A. Irizarry,et al.  A framework for oligonucleotide microarray preprocessing , 2010, Bioinform..

[82]  A. Segal,et al.  Crohn’s disease as an immunodeficiency , 2010, Expert review of clinical immunology.

[83]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[84]  Anna Zhukova,et al.  Modeling sample variables with an Experimental Factor Ontology , 2010, Bioinform..

[85]  Isabelle Cleynen,et al.  Mucosal Gene Expression of Antimicrobial Peptides in Inflammatory Bowel Disease Before and After First Infliximab Treatment , 2009, PloS one.

[86]  G. Bishop,et al.  CD40 and autoimmunity: the dark side of a great activator. , 2009, Seminars in immunology.

[87]  G. Cai,et al.  beta2-glycoprotein i is a cofactor for tissue plasminogen activator-mediated plasminogen activation. , 2009, Arthritis and rheumatism.

[88]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[89]  Mark I. McCarthy,et al.  A Genome-Wide Association Study Identifies Protein Quantitative Trait Loci (pQTLs) , 2008, PLoS genetics.

[90]  S. Mohan,et al.  Identification of mouse Duffy antigen receptor for chemokines (Darc) as a BMD QTL gene. , 2007, Genome research.

[91]  B. Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005 .

[92]  M. Chamaillard,et al.  NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha defensin expression, J. Wehkamp, J. Harder, M. Weichenthal, M. Schwab, E. Schaeffeler, S. Schlee, in: Gut, 53. (2004), 1658 , 2004 .

[93]  L. Alfredsson,et al.  A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. , 2004, Arthritis and rheumatism.

[94]  P. Wei,et al.  Expression, Localization, and Functional Activity of TL1A, a Novel Th1-Polarizing Cytokine in Inflammatory Bowel Disease 1 , 2003, The Journal of Immunology.

[95]  M. Monden,et al.  A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. , 2003, International immunology.

[96]  T. Hla,et al.  TWEAK Is an Endothelial Cell Growth and Chemotactic Factor That Also Potentiates FGF-2 and VEGF-A Mitogenic Activity , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[97]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[98]  E. Sterchi,et al.  Activation of Human Meprin-α in a Cell Culture Model of Colorectal Cancer Is Triggered by the Plasminogen-activating System* , 2002, The Journal of Biological Chemistry.

[99]  E. Wehrwein,et al.  GDNF is regulated in an activity‐dependent manner in rat skeletal muscle , 2002, Muscle & nerve.

[100]  C. Ambrose,et al.  Dual role for TWEAK in angiogenic regulation. , 2002, Journal of cell science.

[101]  R. Horuk,et al.  The Promiscuous Chemokine Binding Profile of the Duffy Antigen/Receptor for Chemokines Is Primarily Localized to Sequences in the Amino-terminal Domain (*) , 1995, The Journal of Biological Chemistry.

[102]  A. Aruffo,et al.  Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. , 1993, Science.

[103]  M. Mancini,et al.  Effects of alpha-adrenergic and beta-adrenergic receptor blockade on lipid metabolism. , 1986, The American journal of medicine.

[104]  R. Price,et al.  Chemokine and cytokine levels in inflammatory bowel disease patients. , 2016, Cytokine.

[105]  G. Daikos,et al.  Differential expression of the TL1A/DcR3 system of TNF/TNFR-like proteins in large vs. small intestinal Crohn's disease. , 2012, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[106]  A. Schroit,et al.  Plasmin-cleaved beta-2-glycoprotein 1 is an inhibitor of angiogenesis. , 2007, The American journal of pathology.

[107]  D. Pfeffermann,et al.  Small area estimation , 2011 .

[108]  H. Hassan,et al.  Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. , 1996, Acta haematologica.