Asymptotically Flat, Spherical, Self-Interacting Scalar, Dirac and Proca Stars

We present a comparative analysis of the self-gravitating solitons that arise in the Einstein–Klein–Gordon, Einstein–Dirac, and Einstein–Proca models, for the particular case of static, spherically symmetric spacetimes. Differently from the previous study by Herdeiro, Pombo and Radu in 2017, the matter fields possess suitable self-interacting terms in the Lagrangians, which allow for the existence of Q-ball-type solutions for these models in the flat spacetime limit. In spite of this important difference, our analysis shows that the high degree of universality that was observed by Herdeiro, Pombo and Radu remains, and various spin-independent common patterns are observed.

[1]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .

[2]  Meike List,et al.  Rotating boson stars and Q-balls , 2005, gr-qc/0505143.

[3]  C. Herdeiro,et al.  Asymptotically flat spinning scalar, Dirac and Proca stars , 2019, Physics Letters B.

[4]  N. Manton,et al.  A saddle-point solution in the Weinberg-Salam theory , 1984 .

[5]  M. Minamitsuji,et al.  Vector boson star solutions with a quartic order self-interaction , 2018, 1805.09867.

[6]  W. Heisenberg Doubts and hopes in quantumelectrodynamics , 1953 .

[7]  W. Thomson 4. On Vortex Atoms , 1869 .

[8]  C. Stivers Class , 2010 .

[9]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[10]  Non-Existence of Black Hole Solutions¶for a Spherically Symmetric, Static Einstein–Dirac–Maxwell System , 1998, gr-qc/9810048.

[11]  C. Frønsdal,et al.  Nonlinear Spinor Fields , 1951 .

[12]  Shapiro,et al.  Boson stars: Gravitational equilibria of self-interacting scalar fields. , 1986, Physical review letters.

[13]  C. Herdeiro,et al.  Kerr black holes with Proca hair , 2016, 1603.02687.

[14]  C. Herdeiro,et al.  Asymptotically flat scalar, Dirac and Proca stars: Discrete vs. continuous families of solutions , 2017, 1708.05674.

[15]  Y. Shnir Topological and Non-Topological Solitons in Scalar Field Theories , 2018 .

[16]  V. Cardoso,et al.  Proca stars: Gravitating Bose–Einstein condensates of massive spin 1 particles , 2015, 1508.05395.

[17]  C. Armendáriz-Picón,et al.  Spinors, Inflation, and Non-Singular Cyclic Cosmologies , 2003, hep-th/0301129.

[18]  Stationary ring solitons in field theory - knots and vortons , 2008, 0804.1357.

[19]  Mario Soler,et al.  Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy , 1970 .

[20]  S. Yau,et al.  Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background , 1998, gr-qc/9805050.

[21]  G. Gibbons Self-gravitating magnetic monopoles, global monopoles and black holes , 2011, 1109.3538.

[22]  D. Sudarsky,et al.  Do collapsed boson stars result in new types of black holes , 1997 .

[23]  M. Volkov,et al.  GRAVITATING NON-ABELIAN SOLITONS AND BLACK HOLES WITH YANG-MILLS FIELDS , 1998, hep-th/9810070.

[24]  Gerard 't Hooft,et al.  Magnetic monopoles in unified gauge theories , 1974 .

[25]  V. Dzhunushaliev,et al.  Dirac stars supported by nonlinear spinor fields , 2018, Physical Review D.

[26]  Adolfo Cisterna,et al.  From topological to nontopological solitons: Kinks, domain walls, and $Q$-balls in a scalar field model with a nontrivial vacuum manifold , 2015, 1511.02757.

[27]  S. Deser Absence of static solutions in source-free Yang-Mills theory , 1976 .

[28]  C. Herdeiro,et al.  Kerr black holes with scalar hair. , 2014, Physical review letters.

[29]  M. Heusler,et al.  Scaling arguments for the existence of static, spherically symmetric solutions of self-gravitating systems , 1992 .

[30]  S. Dolan,et al.  Bound states of the Dirac equation on Kerr spacetime , 2015, 1504.03190.

[31]  Lee,et al.  Scalar soliton stars and black holes. , 1987, Physical review. D, Particles and fields.

[32]  N. Rosen A Field Theory of Elementary Particles , 1939 .

[33]  M. Heusler No-Hair Theorems and Black Holes with Hair , 1996, gr-qc/9610019.

[34]  C. Herdeiro,et al.  Construction and physical properties of Kerr black holes with scalar hair , 2015, 1501.04319.

[35]  T. D. Lee,et al.  Class of scalar-field soliton solutions in three space dimensions , 1976 .

[36]  S. Coleman,et al.  Action minima among solutions to a class of Euclidean scalar field equations , 1978 .

[37]  G. Derrick Comments on Nonlinear Wave Equations as Models for Elementary Particles , 1964 .

[38]  T. Skyrme,et al.  A non-linear field theory , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Nonlinear Dirac fields on the Schwarzschild metric , 1998 .

[40]  Alexander M. Polyakov,et al.  Particle spectrum in quantum field theory , 1974 .

[41]  B. Kleihaus,et al.  Axially symmetric static scalar solitons and black holes with scalar hair , 2013, 1306.4616.

[42]  H. Weyl A Remark on the Coupling of Gravitation and Electron , 1950 .