Feedback Capacity of the Gaussian Interference Channel to Within 2 Bits

We characterize the capacity region to within 2 bits/s/Hz and the symmetric capacity to within 1 bit/s/Hz for the two-user Gaussian interference channel (IC) with feedback. We develop achievable schemes and derive a new outer bound to arrive at this conclusion. One consequence of the result is that feedback provides multiplicative gain at high signal-to-noise ratio: the gain becomes arbitrarily large for certain channel parameters. This finding is in contrast to point-to-point and multiple-access channels where feedback provides no gain and only bounded additive gain respectively. The result makes use of a linear deterministic model to provide insights into the Gaussian channel. This deterministic model is a special case of the El Gamal-Costa deterministic model and as a side-generalization, we establish the exact feedback capacity region of this general class of deterministic ICs.

[1]  Young Han Kim,et al.  Feedback capacity of the first-order moving average Gaussian channel , 2004, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[2]  Gerhard Kramer,et al.  Correction to "Feedback Strategies for White Gaussian Interference Networks, " and a Capacity Theorem for Gaussian Interference Channels With Feedback , 2004, IEEE Trans. Inf. Theory.

[3]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[4]  Vinod M. Prabhakaran,et al.  Interference Channels With Destination Cooperation , 2009, IEEE Transactions on Information Theory.

[5]  Frans M. J. Willems,et al.  The discrete memoryless multiple-access channel with cribbing encoders , 1985, IEEE Trans. Inf. Theory.

[6]  Stanley A. Butman,et al.  A general formulation of linear feedback communication systems with solutions , 1969, IEEE Trans. Inf. Theory.

[7]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[8]  Suhas N. Diggavi,et al.  A Deterministic Approach to Wireless Relay Networks , 2007, ArXiv.

[9]  Hua Wang,et al.  Gaussian Interference Channel Capacity to Within One Bit , 2007, IEEE Transactions on Information Theory.

[10]  Jinhua Jiang,et al.  Discrete Memoryless Interference Channels with Fee back , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[11]  Gerhard Kramer,et al.  Feedback strategies for white Gaussian interference networks , 2002, IEEE Trans. Inf. Theory.

[12]  Emre Telatar,et al.  Bounds on the capacity region of a class of interference channels , 2007, 2007 IEEE International Symposium on Information Theory.

[13]  Leandros Tassiulas,et al.  Broadcast erasure channel with feedback - Capacity and algorithms , 2009, 2009 Workshop on Network Coding, Theory, and Applications.

[14]  Andries P. Hekstra,et al.  Dependence balance bounds for single-output two-way channels , 1989, IEEE Trans. Inf. Theory.

[15]  David Tse,et al.  Feedback Capacity of the Gaussian Interference Channel to Within 1.7075 Bits: the Symmetric Case , 2009, ArXiv.

[16]  Lawrence H. Ozarow,et al.  The capacity of the white Gaussian multiple access channel with feedback , 1984, IEEE Trans. Inf. Theory.

[17]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[18]  Vinod M. Prabhakaran,et al.  Interference Channels With Source Cooperation , 2009, IEEE Transactions on Information Theory.

[19]  Gregory W. Wornell,et al.  Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks , 2003, IEEE Trans. Inf. Theory.

[20]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[21]  David Tse,et al.  The two-user Gaussian interference channel: a deterministic view , 2008, Eur. Trans. Telecommun..

[22]  Max H. M. Costa,et al.  The capacity region of a class of deterministic interference channels , 1982, IEEE Trans. Inf. Theory.

[23]  G. Kramer,et al.  On Noisy Feedback for Interference Channels , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[24]  Thomas Kailath,et al.  A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.

[25]  Sennur Ulukus,et al.  Dependence Balance Based Outer Bounds for Gaussian Networks With Cooperation and Feedback , 2011, IEEE Transactions on Information Theory.

[26]  Frans M. J. Willems The feedback capacity region of a class of discrete memoryless multiple access channels , 1982, IEEE Trans. Inf. Theory.

[27]  Yunnan Wu,et al.  Information Exchange in Wireless Networks with Network Coding and Physical-layer Broadcast , 2004 .

[28]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[29]  Federico Kuhlmann,et al.  Achievability proof of some multiuser channel coding theorems using backward decoding , 1989, IEEE Trans. Inf. Theory.

[30]  T. Kailath,et al.  A coding scheme for additive noise channels with feedback, Part I: No bandwith constraint , 1998 .

[31]  Mohammad Ali Maddah-Ali,et al.  Completely Stale Transmitter Channel State Information is Still Very Useful , 2010, IEEE Transactions on Information Theory.

[32]  Ziv Bar-Yossef,et al.  Index Coding With Side Information , 2006, IEEE Transactions on Information Theory.

[33]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[34]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[35]  Muriel Médard,et al.  XORs in the Air: Practical Wireless Network Coding , 2006, IEEE/ACM Transactions on Networking.

[36]  Daniela Tuninetti,et al.  On InterFerence Channel with Generalized Feedback (IFC-GF) , 2007, 2007 IEEE International Symposium on Information Theory.

[37]  Thomas M. Cover,et al.  Gaussian feedback capacity , 1989, IEEE Trans. Inf. Theory.

[38]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[39]  Cyril Leung,et al.  An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.

[40]  Suhas N. Diggavi,et al.  Wireless Network Information Flow: A Deterministic Approach , 2009, IEEE Transactions on Information Theory.

[41]  Jack K. Wolf,et al.  The capacity region of a multiple-access discrete memoryless channel can increase with feedback (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[42]  Te Sun Han,et al.  A new achievable rate region for the interference channel , 1981, IEEE Trans. Inf. Theory.