Construction of cyclic arrays of Zn-porphyrin units and their guest binding at the solid-liquid interface.

Cyclic arrays consisting of six zinc-porphyrin units are constructed by the supramolecular self-assembly of a dehydrobenzo[12]-annulene derivative having three zinc porphyrin units at the liquid/graphite interface. Binding with C60 furnishes cyclic hexameric arrays of the complexes on the surface.

[1]  S. De Feyter,et al.  Functionalized surface-confined pores: guest binding directed by lateral noncovalent interactions at the solid-liquid interface. , 2014, ACS nano.

[2]  Zhang Xue-mei,et al.  Host-guest supramolecular chemistry at solid-liquid interface: An important strategy for preparing two-dimensional functional nanostructures , 2014 .

[3]  S. De Feyter,et al.  Tailoring surface-confined nanopores with photoresponsive groups. , 2013, Angewandte Chemie.

[4]  W. Dehaen,et al.  Binding ability of Zn-tetraarylporphyrins with two, four and eight 4-(4-(3,6-bis(t-butyl)carbazol-9-ylphenyl)-1,2,3-triazole end groups towards N-containing substrates of different nature , 2013 .

[5]  S. De Feyter,et al.  Control and induction of surface-confined homochiral porous molecular networks. , 2011, Nature chemistry.

[6]  N. Champness,et al.  Guest-induced growth of a surface-based supramolecular bilayer. , 2011, Nature chemistry.

[7]  Duckhyun Kim,et al.  A molecular-clip-based approach to cofacial zinc–porphyrin complexes , 2010 .

[8]  F. Rosei,et al.  Supramolecular ordering in oligothiophene-fullerene monolayers. , 2009, Journal of the American Chemical Society.

[9]  S. De Feyter,et al.  Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. , 2009, Angewandte Chemie.

[10]  D. Bonifazi,et al.  Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. , 2009, Chemistry.

[11]  D. Fichou,et al.  Long-range alignments of single fullerenes by site-selective inclusion into a double-cavity 2D open network. , 2009, Journal of the American Chemical Society.

[12]  B. Feringa,et al.  Two-dimensional molecular patterning by surface-enhanced Zn-porphyrin coordination. , 2009, Langmuir.

[13]  S. De Feyter,et al.  Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. , 2009, Chemical Society reviews.

[14]  K. Landfester,et al.  Topological selectivity in a supramolecular self-assembled host-guest network at the solid-liquid interface , 2008 .

[15]  L. Perdigão,et al.  Functionalized supramolecular nanoporous arrays for surface templating. , 2008, Chemistry.

[16]  M. Asakawa,et al.  STM observation of labile axial ligands to zinc porphyrin at liquid/solid interface , 2007 .

[17]  R. Nolte,et al.  Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. , 2007, Nature nanotechnology.

[18]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[19]  F. D. De Schryver,et al.  Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. , 2006, Journal of the American Chemical Society.

[20]  N. Armaroli,et al.  Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. , 2006, Journal of the American Chemical Society.

[21]  Xiaohong Cheng,et al.  2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. , 2006, Journal of the American Chemical Society.

[22]  P. Bäuerle,et al.  Complexation of C60 on a Cyclothiophene Monolayer Template , 2006 .

[23]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[24]  O. Ito,et al.  Dependence of molecular recognition of fullerene derivative on the adlayer structure of zinc octaethylporphyrin formed on Au(100) surface. , 2005, The journal of physical chemistry. B.

[25]  O. Ito,et al.  Supramolecular assembly of [60] fullerene and highly ordered zinc octaethylporphyrin adlayer formed on Au(111) surface , 2004 .

[26]  K. Kern,et al.  Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems , 2004, Nature materials.