Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits

Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS'08) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (Σ[k]ΠΣ∧) and sum-product-of-constant-degree-polynomials (Σ[k]ΠΣΠδ), for constants k, δ, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC'05; Kayal & Saxena, CCC'06; Saxena & Seshadhri, FOCS'10, STOC'11); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP'11; Saha, Saxena & Saptharishi, Comput.Compl.'13; Forbes, FOCS'15; Kumar & Saraf, CCC'16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS'09; Shpilka, STOC'19; Peleg & Shpilka, CCC'20, STOC'21). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for (Σ[k]ΠΣ∧). Further, we give the first quasipolynomial time blackbox PIT for both (Σ[k]ΠΣ∧) and (Σ[k]ΠΣΠδ). No subexponential time algorithm was known prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.

[1]  V. Vinay,et al.  Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[2]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[3]  Zeev Dvir,et al.  Testing Equivalence of Polynomials under Shifts , 2014, ICALP.

[4]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[5]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[6]  Nitin Saxena,et al.  A Largish Sum-Of-Squares Implies Circuit Hardness and Derandomization , 2021, ITCS.

[7]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[8]  Nitin Saxena,et al.  From Sylvester-Gallai Configurations to Rank Bounds: Improved Black-Box Identity Test for Depth-3 Circuits , 2010, FOCS.

[9]  Amir Shpilka Interpolation of depth-3 arithmetic circuits with two multiplication gates , 2007, STOC '07.

[10]  Guillaume Lagarde,et al.  Non-commutative computations: lower bounds and polynomial identity testing , 2016, Electron. Colloquium Comput. Complex..

[11]  Mrinal Kumar,et al.  On the Existence of Algebraically Natural Proofs , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[12]  Nitin Saxena,et al.  A Case of Depth-3 Identity Testing, Sparse Factorization and Duality , 2013, computational complexity.

[13]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.

[14]  Ramprasad Saptharishi,et al.  If VNP is hard, then so are equations for it , 2020, Electron. Colloquium Comput. Complex..

[15]  Shubhangi Saraf,et al.  Sums of products of polynomials in few variables : lower bounds and polynomial identity testing , 2015, CCC.

[16]  Nitin Saxena,et al.  Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter , 2010, STOC '11.

[17]  Ramprasad Saptharishi,et al.  Near-optimal Bootstrapping of Hitting Sets for Algebraic Circuits , 2018, Electron. Colloquium Comput. Complex..

[18]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[19]  Ramprasad Saptharishi,et al.  Hitting sets for multilinear read-once algebraic branching programs, in any order , 2014, STOC.

[20]  Michael A. Forbes Deterministic Divisibility Testing via Shifted Partial Derivatives , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[21]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[22]  Robert Andrews,et al.  Algebraic hardness versus randomness in low characteristic , 2020, Electron. Colloquium Comput. Complex..

[23]  Amir Shpilka,et al.  Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[24]  Zeev Dvir,et al.  Hardness-randomness tradeoffs for bounded depth arithmetic circuits , 2008, SIAM J. Comput..

[25]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[26]  Ilya Volkovich,et al.  Black-Box Identity Testing of Depth-4 Multilinear Circuits , 2011, Combinatorica.

[27]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[28]  Ankit Gupta Algebraic Geometric Techniques for Depth-4 PIT & Sylvester-Gallai Conjectures for Varieties , 2014, Electron. Colloquium Comput. Complex..

[29]  Nitin Saxena,et al.  Bootstrapping variables in algebraic circuits , 2018, Proceedings of the National Academy of Sciences.

[30]  Ramprasad Saptharishi,et al.  Hardness-Randomness Tradeoffs for Algebraic Computation , 2019, Bull. EATCS.

[31]  Enrico Carlini,et al.  The solution to the Waring problem for monomials and the sum of coprime monomials , 2012 .

[32]  Nitin Saxena,et al.  Identity Testing for Constant-Width, and Any-Order, Read-Once Oblivious Arithmetic Branching Programs , 2016, Theory Comput..

[33]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[34]  Ramprasad Saptharishi,et al.  Identity Testing and Lower Bounds for Read-$k$ Oblivious Algebraic Branching Programs , 2015, Electron. Colloquium Comput. Complex..

[35]  Wolmer V. Vasconcelos,et al.  Computational methods in commutative algebra and algebraic geometry , 1997, Algorithms and computation in mathematics.

[36]  Zeev Dvir,et al.  Locally Decodable Codes with Two Queries and Polynomial Identity Testing for Depth 3 Circuits , 2007, SIAM J. Comput..

[37]  Mrinal Kumar,et al.  Hardness vs Randomness for Bounded Depth Arithmetic Circuits , 2018, Computational Complexity Conference.

[38]  Adam R. Klivans,et al.  Learning Restricted Models of Arithmetic Circuits , 2006, Theory Comput..

[39]  Amir Shpilka,et al.  Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits , 2018, Theory Comput..

[40]  Nitin Saxena,et al.  Special-case algorithms for blackbox radical membership, nullstellensatz and transcendence degree , 2020, ISSAC.

[41]  Ramprasad Saptharishi,et al.  Derandomization from Algebraic Hardness: Treading the Borders , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[42]  Nitin Saxena,et al.  Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs , 2016, computational complexity.

[43]  Nitin Saxena,et al.  Progress on Polynomial Identity Testing - II , 2014, Electron. Colloquium Comput. Complex..

[44]  Nitin Saxena,et al.  Algebraic independence and blackbox identity testing , 2011, Inf. Comput..

[45]  Nitin Saxena,et al.  Quasi-polynomial hitting-set for set-depth-Δ formulas , 2012, STOC '13.

[46]  Nitin Saxena,et al.  Discovering the roots: uniform closure results for algebraic classes under factoring , 2017, Electron. Colloquium Comput. Complex..

[47]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[48]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[49]  Thomas Thierauf,et al.  Bipartite perfect matching is in quasi-NC , 2016, STOC.

[50]  Pascal Koiran,et al.  Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..

[51]  Daniel A. Spielman,et al.  Randomness efficient identity testing of multivariate polynomials , 2001, STOC '01.

[52]  Neeraj Kayal,et al.  Polynomial Identity Testing for Depth 3 Circuits , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[53]  Nitin Saxena,et al.  Poly-time blackbox identity testing for sum of log-variate constant-width ROABPs , 2020, Electron. Colloquium Comput. Complex..

[54]  Manindra Agrawal,et al.  Proving Lower Bounds Via Pseudo-random Generators , 2005, FSTTCS.

[55]  Ketan Mulmuley,et al.  The GCT program toward the P vs. NP problem , 2012, Commun. ACM.

[56]  Pascal Koiran,et al.  A Wronskian approach to the real τ-conjecture , 2012, J. Symb. Comput..

[57]  Nitin Saxena,et al.  Hitting-Sets for ROABP and Sum of Set-Multilinear Circuits , 2014, SIAM J. Comput..

[58]  Françoise Delon,et al.  Formal power series , 1996, Annals of Mathematics and Artificial Intelligence.

[59]  Nitin Saxena,et al.  Progress on Polynomial Identity Testing , 2009, Bull. EATCS.

[60]  Joshua A. Grochow,et al.  Boundaries of VP and VNP , 2016, ICALP.

[61]  Zeyu Guo,et al.  Variety evasive subspace families , 2021, Electron. Colloquium Comput. Complex..

[62]  Amir Shpilka,et al.  Reconstruction of Generalized Depth-3 Arithmetic Circuits with Bounded Top Fan-in , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[63]  Ilya Volkovich,et al.  Deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in , 2010, STOC '10.

[64]  Ran Raz,et al.  Deterministic polynomial identity testing in non-commutative models , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[65]  Nitin Saxena,et al.  An Almost Optimal Rank Bound for Depth-3 Identities , 2008, 2009 24th Annual IEEE Conference on Computational Complexity.

[66]  Nitin Saxena,et al.  Jacobian Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formulas and Depth-3 Transcendence Degree-k Circuits , 2016, SIAM J. Comput..

[67]  Nitin Saxena,et al.  Diagonal Circuit Identity Testing and Lower Bounds , 2008, ICALP.

[68]  Shubhangi Saraf,et al.  Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization , 2014, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[69]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[70]  Joshua A. Grochow Unifying Known Lower Bounds via Geometric Complexity Theory , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[71]  Neeraj Kayal,et al.  Lower Bounds for Sums of Powers of Low Degree Univariates , 2015, ICALP.

[72]  Amir Shpilka,et al.  Black box polynomial identity testing of generalized depth-3 arithmetic circuits with bounded top fan-in , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[73]  Neeraj Kayal,et al.  Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[74]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[75]  Partha Mukhopadhyay,et al.  Depth-4 Identity Testing and Noether's Normalization Lemma , 2016, CSR.

[76]  Shubhangi Saraf,et al.  Arithmetic Circuits with Locally Low Algebraic Rank , 2016, Theory Comput..

[77]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.