The bias of isotonic regression.

We study the bias of the isotonic regression estimator. While there is extensive work characterizing the mean squared error of the isotonic regression estimator, relatively little is known about the bias. In this paper, we provide a sharp characterization, proving that the bias scales as O(n -β/3) up to log factors, where 1 ≤ β ≤ 2 is the exponent corresponding to Hölder smoothness of the underlying mean. Importantly, this result only requires a strictly monotone mean and that the noise distribution has subexponential tails, without relying on symmetric noise or other restrictive assumptions.

[1]  Hendrik P. Lopuhaa,et al.  The limit distribution of the L∞ -error of Grenander-type estimators , 2011, 1111.5934.

[2]  Cécile Durot,et al.  Sharp asymptotics for isotonic regression , 2002 .

[3]  Cun-Hui Zhang,et al.  Minimax Risk Bounds for Piecewise Constant Models , 2017 .

[4]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[5]  Adityanand Guntuboyina,et al.  On risk bounds in isotonic and other shape restricted regression problems , 2013, 1311.3765.

[6]  Adityanand Guntuboyina,et al.  Nonparametric Shape-Restricted Regression , 2017, Statistical Science.

[7]  E. Andersen On the fluctuations of sums of random variables II , 1953 .

[8]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[9]  Eric Cator,et al.  Adaptivity and optimality of the monotone least-squares estimator , 2008 .

[10]  Rina Foygel Barber,et al.  Contraction and uniform convergence of isotonic regression , 2017, Electronic Journal of Statistics.

[11]  U. Grenander On the theory of mortality measurement , 1956 .

[12]  Moulinath Banerjee,et al.  Divide and conquer in nonstandard problems and the super-efficiency phenomenon , 2016, The Annals of Statistics.

[13]  F. T. Wright The Asymptotic Behavior of Monotone Regression Estimates , 1981 .

[14]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[15]  R. E. Miles THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS , 1959 .

[16]  Sabyasachi Chatterjee,et al.  Isotonic regression in general dimensions , 2017, The Annals of Statistics.

[17]  D. J. Bartholomew,et al.  A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II , 1959 .

[18]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[19]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .