Linear Temporal Logic Satisfaction in Adversarial Environments Using Secure Control Barrier Certificates

This paper studies the satisfaction of a class of temporal properties for cyber-physical systems (CPSs) over a finite-time horizon in the presence of an adversary, in an environment described by discrete-time dynamics. The temporal logic specification is given in safe-LTL_F, a fragment of linear temporal logic over traces of finite length. The interaction of the CPS with the adversary is modeled as a two-player zero-sum discrete-time dynamic stochastic game with the CPS as defender. We formulate a dynamic programming based approach to determine a stationary defender policy that maximized the probability of satisfaction of a safe-LTL_F formula over a finite time-horizon under any stationary adversary policy. We introduce secure control barrier certificates (S-CBCs), a generalization of barrier certificates and control barrier certificates that accounts for the presence of an adversary, and use S-CBCs to provide a lower bound on the above satisfaction probability. When the dynamics of the evolution of the system state has a specific underlying structure, we present a way to determine an S-CBC as a polynomial in the state variables using sum-of-squares optimization. An illustrative example demonstrates our approach.

[1]  Vijay Kumar,et al.  Automated composition of motion primitives for multi-robot systems from safe LTL specifications , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[3]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[4]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, JACM.

[5]  Helen Gill,et al.  Cyber-Physical Systems , 2019, 2019 IEEE International Conference on Mechatronics (ICM).

[6]  John Lygeros,et al.  Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems , 2008, Autom..

[7]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[8]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..

[9]  Maria Domenica Di Benedetto,et al.  Bisimulation Equivalence of Discrete-Time Stochastic Linear Control Systems , 2018, IEEE Transactions on Automatic Control.

[10]  Hai Lin,et al.  Privacy Verification in POMDPs via Barrier Certificates , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[11]  Christel Baier,et al.  Principles of model checking , 2008 .

[12]  Paulo Tabuada,et al.  Control Barrier Functions: Theory and Applications , 2019, 2019 18th European Control Conference (ECC).

[13]  Paulo Tabuada,et al.  Control Barrier Function Based Quadratic Programs for Safety Critical Systems , 2016, IEEE Transactions on Automatic Control.

[14]  Aaron D. Ames,et al.  Input-to-State Safety With Control Barrier Functions , 2018, IEEE Control Systems Letters.

[15]  Majid Zamani,et al.  Formal Synthesis of Stochastic Systems via Control Barrier Certificates , 2019, IEEE Transactions on Automatic Control.

[16]  Calin Belta,et al.  Formal Methods for Discrete-Time Dynamical Systems , 2017 .

[17]  Orna Kupferman,et al.  Model Checking of Safety Properties , 1999, CAV.

[18]  John Lygeros,et al.  A stochastic games framework for verification and control of discrete time stochastic hybrid systems , 2013, Autom..

[19]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[20]  Nils Jansen,et al.  Control Theory Meets POMDPs: A Hybrid Systems Approach , 2019, IEEE Transactions on Automatic Control.

[21]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[22]  Rafal Rohozinski,et al.  Stuxnet and the Future of Cyber War , 2011 .

[23]  Jill Slay,et al.  Lessons Learned from the Maroochy Water Breach , 2007, Critical Infrastructure Protection.

[24]  Ufuk Topcu,et al.  Automata Theory Meets Barrier Certificates: Temporal Logic Verification of Nonlinear Systems , 2014, IEEE Transactions on Automatic Control.

[25]  Paulo Tabuada,et al.  Non-invasive Spoofing Attacks for Anti-lock Braking Systems , 2013, CHES.

[26]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[27]  Calin Belta,et al.  Optimal Control of Markov Decision Processes With Linear Temporal Logic Constraints , 2014, IEEE Transactions on Automatic Control.

[28]  Insoon Yang,et al.  A dynamic game approach to distributionally robust safety specifications for stochastic systems , 2017, Autom..

[29]  Dimos V. Dimarogonas,et al.  Control Barrier Functions for Signal Temporal Logic Tasks , 2019, IEEE Control Systems Letters.

[30]  Samuel Coogan,et al.  Verification and Control for Finite-Time Safety of Stochastic Systems via Barrier Functions , 2019, 2019 IEEE Conference on Control Technology and Applications (CCTA).

[31]  H. Kushner Stochastic Stability and Control , 2012 .

[32]  Dejan Nickovic,et al.  Monitoring Temporal Properties of Continuous Signals , 2004, FORMATS/FTRTFT.

[33]  Giuseppe De Giacomo,et al.  Synthesis for LTL and LDL on Finite Traces , 2015, IJCAI.

[34]  Jan Kretínský,et al.  Rabinizer 4: From LTL to Your Favourite Deterministic Automaton , 2018, CAV.

[35]  Giuseppe De Giacomo,et al.  Linear Temporal Logic and Linear Dynamic Logic on Finite Traces , 2013, IJCAI.

[36]  Julia E. Sullivan,et al.  How cyber-attacks in Ukraine show the vulnerability of the U.S. power grid , 2017 .

[37]  Radha Poovendran,et al.  Secure Control under Partial Observability with Temporal Logic Constraints , 2019, 2019 American Control Conference (ACC).

[38]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[39]  Majid Zamani,et al.  Temporal Logic Verification of Stochastic Systems Using Barrier Certificates , 2018, ATVA.

[40]  J. Tsitsiklis,et al.  An optimal one-way multigrid algorithm for discrete-time stochastic control , 1991 .

[41]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[42]  Andrew Clark,et al.  Secure Control Under Linear Temporal Logic Constraints , 2018, 2018 Annual American Control Conference (ACC).

[43]  Andrew Clark,et al.  LQG Reference Tracking with Safety and Reachability Guarantees under False Data Injection Attacks , 2019, 2019 American Control Conference (ACC).

[44]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[45]  Joel W. Burdick,et al.  Finite state control of POMDPs with LTL specifications , 2014, 2014 American Control Conference.

[46]  Russ Tedrake,et al.  Finite-time regional verification of stochastic non-linear systems , 2011, Int. J. Robotics Res..

[47]  Joël Ouaknine,et al.  Timed Temporal Logics , 2017, Models, Algorithms, Logics and Tools.

[48]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[49]  A. Haurie,et al.  Sequential Stackelberg equilibria in two-person games , 1985 .

[50]  Geoffrey J. Gordon,et al.  Approximate solutions to markov decision processes , 1999 .