Optimal Tight Equi‐Difference Conflict‐Avoiding Codes of Length n = 2k ± 1 and Weight 3
暂无分享,去创建一个
Hung-Lin Fu | Shung-Liang Wu | H. Fu | S. Wu
[1] Vladimir D. Tonchev,et al. On Conflict-Avoiding Codes of Length $n=4m$ for Three Active Users , 2007, IEEE Transactions on Information Theory.
[2] László Györfi,et al. Constructions of protocol sequences for multiple access collision channel without feedback , 1993, IEEE Trans. Inf. Theory.
[3] Peter Mathys,et al. A class of codes for a T active users out of N multiple-access communication system , 1990, IEEE Trans. Inf. Theory.
[4] László Györfi,et al. Constructions of binary constant-weight cyclic codes and cyclically permutable codes , 1992, IEEE Trans. Inf. Theory.
[5] Kenneth W. Shum,et al. Optimal conflict-avoiding codes of odd length and weight three , 2014, Des. Codes Cryptogr..
[6] Vladimir I. Levenshtein,et al. Conflict-avoiding codes and cyclic triple systems , 2007, Probl. Inf. Transm..
[7] Kenneth W. Shum,et al. A tight asymptotic bound on the size of constant-weight conflict-avoiding codes , 2010, Des. Codes Cryptogr..
[8] Koji Momihara,et al. Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three , 2007, Des. Codes Cryptogr..
[9] Hung-Lin Fu,et al. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..
[10] Vladimir D. Tonchev,et al. Optimal conflict-avoiding codes for three active users , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[11] Hung-Lin Fu,et al. Optimal Conflict-Avoiding Codes of Even Length and Weight 3 , 2010, IEEE Transactions on Information Theory.
[12] Meinard Müller,et al. Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..
[13] Hung-Lin Fu,et al. Optimal Conflict-Avoiding Codes of Even Length and Weight 3 , 2010, IEEE Transactions on Information Theory.
[14] Kenneth W. Shum,et al. A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes , 2010, IEEE Transactions on Information Theory.
[15] Koji Momihara. On cyclic 2(k-1)-support (n, k)k-1 difference families , 2009, Finite Fields Their Appl..
[16] Boris Tsybakov,et al. Some Constructions of Conflict-Avoiding Codes , 2002, Probl. Inf. Transm..