Determination of appropriate location of superconducting fault current limiter in the smart grid

Smart grid is an advancement of the existing electrical grid. The most important aspect of the future smart grid is decentralization of the existing electrical grid into number of smaller grids, which are also called as micro grids. The key feature of the smart grid is the amalgamation of distributed energy resources (DER) with the main grid. The extensive integration of distributed energy resources in power grid causes increase in the value of the fault current. Increased fault current is a serious trouble which has to be overcome for successful accomplishment of smart grids. Superconducting Fault Current Limiter (SFCL) is innovative equipment which has the potential to limit the fault current in the smart grid. It reduces the value of the fault current within first peak of the fault current. The suitable place of SFCL in the smart grid has to be described to obtain the benefit of its incorporation in the smart grid. In this paper the working of SFCL under normal and fault condition has been explained using matlab simulation and result of simulation is shown and for determining its appropriate location in the smart grid 10 MVA wind farm is integrated with the distribution network of the conventional power grid and three phase to ground fault is created at three different locations in the smart grid. For each created fault SFCL position is assessed in the grid to determine its most appropriate place in the grid i.e. place at which it provides maximum suppression of fault current from the wind farm as well as from the conventional power plant.