Towards more Realistic Logic-based Robot Controllers in the GOLOG Framework

High-level robot control languages should not only be expressive but should also support reasoning about actions, in particular, the projection of robot plans. Projection is useful for the robot when choosing among different courses of action as well as for the designer of robot controllers, since projections allow for qualitative simulations. The high-level programming language GOLOG was specifically proposed for this purpose. The semantics of GOLOG, which offers constructs such as sequences, iterations and recursive procedures, is based on the situation calculus, a logical language for reasoning about action and change. In particular, every primitive GOLOG action is an action of the underlying situation calculus theory, which allows reasoning about the effects of primitive actions or complex GOLOG programs. While GOLOG comes equipped with a powerful projection mechanism, however, it lacks the expressiveness provided by non-logic-based robot programming languages like RPL, RAP or Colbert. In particular, it does not provide facilities for dealing with continuous change, event-driven behavior, and communication with lower-level routines for navigation or localization, to which we refer to as lowlevel processes. Another limitation of GOLOG is that it assumes that actions have deterministic effects and cannot represent probabilistic uncertainty. In realistic domains, however, uncertainty seems to be ubiquitous: a robot has often only probabilistic beliefs about the state of the world, and low-level processes have probabilistic outcomes. In this thesis, we show how the GOLOG framework can be extended to deal with issues like continuous change, event-driven actions and low-level processes in a natural way, thus shortening the gap in expressiveness between non-logic-based and logic-based robot control languages. In particular, we integrate continuous time and change directly in the ontology of GOLOG. To facilitate the actual execution of high-level plans on a real robot, we employ a layered robot control architecture where a high-level controller communicates via message with the low-level processes provided by the basic-task execution system. Our framework allows not only the projection and the actual (on-line) execution of the same plans, but also supports the specification of plans with interleave projection and on-line execution. Furthermore, we provide means to represent and deal with probabilistic beliefs and noisy sensors and effectors. Finally, the extended GOLOG formalism is implemented in PROLOG and evaluated in several experiments, including delivery tasks where the mobile robot CARL operates in the Computer Science Department V at Aachen University of Technology.

[1]  D. McDermott Transformational Planning of Reactive Behavior , 1992 .

[2]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[3]  Erann Gat,et al.  Experiences with an architecture for intelligent, reactive agents , 1997, J. Exp. Theor. Artif. Intell..

[4]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[5]  Todd G. Kelley,et al.  Modeling Complex Systems in the Situation Calculus: A Case Study Using the Dagstuhl Steam Boiler Problem , 1996, KR.

[6]  C. Cordell Green,et al.  Application of Theorem Proving to Problem Solving , 1969, IJCAI.

[7]  David Poole,et al.  The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty , 1997, Artif. Intell..

[8]  Daniel S. Weld,et al.  Probabilistic Planning with Information Gathering and Contingent Execution , 1994, AIPS.

[9]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[10]  Bernhard Nebel,et al.  Extending Planning Graphs to an ADL Subset , 1997, ECP.

[11]  Michael L. Littman,et al.  The Computational Complexity of Probabilistic Planning , 1998, J. Artif. Intell. Res..

[12]  David Poole,et al.  Decision Theory, the Situation Calculus and Conditional Plans , 1998, Electron. Trans. Artif. Intell..

[13]  A. Haas The Case for Domain-Specific Frame Axioms , 1987 .

[14]  John Langford,et al.  Probabilistic Planning in the Graphplan Framework , 1999, ECP.

[15]  Ramiro Liscano,et al.  A Blackboard, Activity-based Control Architecture For A Mobile Platform , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Fangzhen Lin,et al.  How to Progress a Database , 1997, Artif. Intell..

[17]  Fangzhen Lin,et al.  How to Progress a Database II: The STRIPS Connection , 1995, IJCAI.

[18]  Michael Thielscher,et al.  Reasoning about Continuous Processes , 1996, AAAI/IAAI, Vol. 1.

[19]  Hector J. Levesque,et al.  Reasoning about Concurrent Execution Prioritized Interrupts, and Exogenous Actions in the Situation Calculus , 1997, IJCAI.

[20]  Mark Witkowski,et al.  High-Level Robot Control through Logic , 2000, ATAL.

[21]  Gerhard Lakemeyer,et al.  cc-Golog: Towards More Realistic Logic-Based Robot Controllers , 2000, AAAI/IAAI.

[22]  Edwin P. D. Pednault,et al.  ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus , 1989, KR.

[23]  Henrik Grosskreutz,et al.  Probabilistic Projection and Belief Update in the pGOLOG Framework , 2000, GI Jahrestagung.

[24]  Michael Thielscher,et al.  From Situation Calculus to Fluent Calculus: State Update Axioms as a Solution to the Inferential Frame Problem , 1999, Artif. Intell..

[25]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[26]  Michael Thielscher,et al.  Towards State Update Axioms: Reifying Successor State Axioms , 1998, JELIA.

[27]  Kurt Konolige COLBERT: A Language for Reactive Control in Sapphira , 1997, KI.

[28]  R. Bellman Dynamic programming. , 1957, Science.

[29]  David H. D. Warren,et al.  Generating Conditional Plans and Programs , 1976, AISB.

[30]  Fangzhen Lin,et al.  State Constraints Revisited , 1994, J. Log. Comput..

[31]  Ronald P. A. Petrick,et al.  Modeling an Agent ’ s Incomplete Knowledge during Planning and Execution , 1998 .

[32]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[33]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[34]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[35]  E. Gat On Three-Layer Architectures , 1997 .

[36]  Craig Boutilier,et al.  Computing Optimal Policies for Partially Observable Decision Processes Using Compact Representations , 1996, AAAI/IAAI, Vol. 2.

[37]  Chitta Baral,et al.  Reasoning about actions in a probabilistic setting , 2002, AAAI/IAAI.

[38]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[39]  Patrick J. Hayes,et al.  The second naive physics manifesto , 1995 .

[40]  Gero Iwan Explaining What Went Wrong in Dynamic Domains , 2000, GI Jahrestagung.

[41]  Murray Shanahan,et al.  The Event Calculus Explained , 1999, Artificial Intelligence Today.

[42]  David E. Smith,et al.  Conformant Graphplan , 1998, AAAI/IAAI.

[43]  Jonathan H. Connell,et al.  SSS: a hybrid architecture applied to robot navigation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[44]  Michael R. M. Jenkin,et al.  Reactivity in a Logic-Based Robot Programming Framework , 1999, ATAL.

[45]  R. James Firby,et al.  An Investigation into Reactive Planning in Complex Domains , 1987, AAAI.

[46]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[47]  Eugenia Ternovskaia Interval Situation Calculus , 1994 .

[48]  Erik Sandewall,et al.  Combining Logic and Differential Equations for Describing Real-World Systems , 1989, KR.

[49]  Michael Beetz,et al.  Probabilistic Hybrid Action Models for Predicting Concurrent Percept-Driven Robot Behavior , 2000, AIPS.

[50]  Hector J. Levesque,et al.  An Incremental Interpreter for High-Level Programs with Sensing , 1999 .

[51]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[52]  Blai Bonet High-Level Planning and Control with Incomplete Information Using POMDP's , 1998 .

[53]  David A. McAllester,et al.  Systematic Nonlinear Planning , 1991, AAAI.

[54]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[55]  Rachid Alami,et al.  Multi-robot cooperation in the MARTHA project , 1998, IEEE Robotics Autom. Mag..

[56]  David L. Poole,et al.  A Framework for Decision-Theoretic Planning I: Combining the Situation Calculus, Conditional Plans, Probability and Utility , 1996, UAI.

[57]  Gerhard Lakemeyer,et al.  Only Knowing in the Situation Calculus , 1996, KR.

[58]  Drew McDermott,et al.  An Algorithm for Probabilistic, Totally-Ordered Temporal Projection , 1994 .

[59]  Hector,et al.  High-level robotic control : beyond planning Position paper , 2002 .

[60]  Raymond Reiter,et al.  The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression , 1991, Artificial and Mathematical Theory of Computation.

[61]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[62]  Ernest Davis,et al.  Semantics for tasks that can be interrupted or abandoned , 1992 .

[63]  Hector J. Levesque,et al.  Reasoning about Noisy Sensors and Effectors in the Situation Calculus , 1995, Artif. Intell..

[64]  Michael Thielscher,et al.  Introduction to the Fluent Calculus , 1998, Electron. Trans. Artif. Intell..

[65]  Hudson Turner,et al.  Causal Theories of Action and Change , 1997, AAAI/IAAI.

[66]  Gerhard Lakemeyer,et al.  AOL: A logic of Acting, Sensing, Knowing, and Only Knowing , 1998, KR.

[67]  Vladimir Lifschitz,et al.  On the Logic of Causal Explanation (Research Note) , 1997, Artif. Intell..

[68]  Keith Golden,et al.  Representing Sensing Actions: The Middle Ground Revisited , 1996, KR.

[69]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[70]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[71]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[72]  Robert James Firby,et al.  Adaptive execution in complex dynamic worlds , 1989 .

[73]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[74]  Patrick Doherty,et al.  Cicumscribing Features and Fluents , 1994, ICTL.

[75]  Hector J. Levesque,et al.  The Frame Problem and Knowledge-Producing Actions , 1993, AAAI.

[76]  Javier Pinto,et al.  Integrating Discrete and Continuous Change in a Logical Framework , 1998, Comput. Intell..

[77]  Nicholas Kushmerick,et al.  An Algorithm for Probabilistic Planning , 1995, Artif. Intell..

[78]  Craig Boutilier,et al.  Symbolic Dynamic Programming for First-Order MDPs , 2001, IJCAI.

[79]  Michael Beetz,et al.  Improving Robot Plans During Their Execution , 1994, AIPS.

[80]  Yves Lesprance,et al.  Integrating Planning into Reactive High-Level Robot Programs , 2000 .

[81]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[82]  Ramiro Liscano,et al.  A system architecture for a mobile robot based on activities and a blackboard control unit , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[83]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[84]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[85]  Raymond Reiter,et al.  Temporal Reasoning in Logic Programming: A Case for the Situation Calculus , 1993, ICLP.

[86]  Wolfram Burgard,et al.  Map learning and high-speed navigation in RHINO , 1998 .

[87]  R. Reiter,et al.  Temporal reasoning in the situation calculus , 1994 .

[88]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[89]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[90]  Murray Shanahan,et al.  Reinventing Shakey , 2001 .

[91]  Ronald P. A. Petrick,et al.  Modeling an Agent's Incomplete Knowledge During Planning and During Execution , 1998, KR.

[92]  Murray Shanahan Noise, Non-Determinism and Spatial Uncertainty , 1997, AAAI/IAAI.

[93]  Erann Gat,et al.  An Autonomous Spacecraft Agent Prototype , 1997, AGENTS '97.

[94]  Michael Thielscher,et al.  Addressing the Qualification Problem in FLUX , 2001, KI/ÖGAI.

[95]  Raymond Reiter,et al.  Proving Properties of States in the Situation Calculus , 1993, Artif. Intell..

[96]  Drew McDermott,et al.  A reactive plan language , 1991 .

[97]  Patrick Doherty,et al.  TALplanner: A Temporal Logic-Based Planner , 2001, AI Mag..

[98]  Antony Galton,et al.  A Critical Examination of Allen's Theory of Action and Time , 1990, Artif. Intell..

[99]  Yoav Shoham,et al.  Nonmonotonic Logics: Meaning and Utility , 1987, IJCAI.

[100]  D. McDermott A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[101]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[102]  Michael Beetz Structured reactive controllers: controlling robots that perform everyday activity , 1999, AGENTS '99.

[103]  R. James Firby,et al.  The RAP language manual , 1995 .

[104]  Erann Gat,et al.  Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Controlling Real-World Mobile Robots , 1992, AAAI.

[105]  Jana Koehler,et al.  Planning under Resource Constraints , 1998, ECAI.

[106]  Raymond Reiter,et al.  Sequential, Temporal GOLOG , 1998, KR.

[107]  Karen L. Myers A Procedural Knowledge Approach to Task-Level Control , 1996, AIPS.

[108]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.

[109]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[110]  Gerhard Lakemeyer,et al.  Turning High-Level Plans into Robot Programs in Uncertain Domains , 2000, ECAI.

[111]  Mikhail Soutchanski,et al.  An On-line Decision-Theoretic Golog Interpreter , 2001, IJCAI.

[112]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[113]  Wolfram Burgard,et al.  GOLEX - Bridging the Gap between Logic (GOLOG) and a Real Robot , 1998, KI.

[114]  Wolfram Burgard,et al.  The Mobile Robot Rhino , 1995, SNN Symposium on Neural Networks.

[115]  Michael P. Georgeff,et al.  Decision-Making in an Embedded Reasoning System , 1989, IJCAI.

[116]  Cristina Sernadas,et al.  Nondeterminism and Uncertainty in the Situation Calculus , 1999, FLAIRS.

[117]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[118]  Michael Beetz,et al.  Expressing Transformations of Structured Reactive Plans , 1997, ECP.

[119]  Hector J. Levesque,et al.  Reasoning about Noisy Sensors in the Situation Calculus , 1995, IJCAI.

[120]  Michael Beetz,et al.  Causal Models of Mobile Service Robot Behavior , 1998, AIPS.

[121]  Rob Miller,et al.  A Case Study in Reasoning about Actions and Continuous Change , 1996, ECAI.

[122]  Sebastian Sardiña,et al.  Local Conditional High-Level Robot Programs , 2001, LPAR.

[123]  J. McCarthy Situations, Actions, and Causal Laws , 1963 .

[124]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[125]  Ray Reiter,et al.  On knowledge-based programming with sensing in the situation calculus , 2001, ACM Trans. Comput. Log..

[126]  Tran Cao Son,et al.  Formalizing sensing actions A transition function based approach , 2001, Artif. Intell..

[127]  James F. Allen,et al.  Actions and Events in Interval Temporal Logic , 1994, J. Log. Comput..

[128]  Blai Bonet,et al.  Planning as Heuristic Search: New Results , 1999, ECP.

[129]  Gerhard Lakemeyer,et al.  On sensing and off-line interpreting in GOLOG , 1999 .

[130]  Rachid Alami,et al.  A Possibilistic Planner that Deals with Non-Determinism and Contingency , 1999, IJCAI.

[131]  Michael Beetz,et al.  Probabilistic, Prediction-Based Schedule Debugging for Autonomous Robot Office Couriers , 1999, KI.

[132]  Alessandro Saffiotti,et al.  The Saphira architecture: a design for autonomy , 1997, J. Exp. Theor. Artif. Intell..

[133]  Michael Gelfond,et al.  Representing Action and Change by Logic Programs , 1993, J. Log. Program..

[134]  Karen Zita Haigh,et al.  A layered architecture for office delivery robots , 1997, AGENTS '97.

[135]  Karen Zita Haigh,et al.  Xavier: experience with a layered robot architecture , 1997, SGAR.

[136]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[137]  Murray Shanahan,et al.  Noise and the Common Sense Informatic Situation for a Mobile Robot , 1996, AAAI/IAAI, Vol. 2.

[138]  Robert A. Kowalski,et al.  Database Updates in the Event Calculus , 1992, J. Log. Program..

[139]  Hector Geffner,et al.  Heuristic Planning with Time and Resources , 2014 .

[140]  Todd G. Kelley,et al.  Reasoning about Physical Systems with the Situation Calculus , 1995 .

[141]  Hector J. Levesque,et al.  Incremental execution of guarded theories , 2001, ACM Trans. Comput. Log..

[142]  Hector J. Levesque,et al.  Foundations for the Situation Calculus , 1998, Electron. Trans. Artif. Intell..

[143]  Murray Shanahan,et al.  Reasoning about Discontinuities in the Event Calculus , 1996, KR.

[144]  Hector J. Levesque,et al.  Projection Using Regression and Sensors , 1999, IJCAI.

[145]  John Robert Harrison,et al.  Theorem proving with the real numbers , 1998, CPHC/BCS distinguished dissertations.

[146]  Hector J. Levesque,et al.  What Is Planning in the Presence of Sensing? , 1996, AAAI/IAAI, Vol. 2.

[147]  Michael Thielscher,et al.  Representing the Knowledge of a Robot , 2000, KR.

[148]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[149]  Hector J. Levesque,et al.  ConGolog, a concurrent programming language based on the situation calculus , 2000, Artif. Intell..

[150]  Drew McDermott,et al.  Robot Planning , 1991, AI Mag..

[151]  Michael Thielscher,et al.  The Qualification Problem: A solution to the problem of anomalous models , 2001, Artif. Intell..

[152]  Murray Shanahan,et al.  Representing Continuous Change in the Event Calculus , 1990, ECAI.

[153]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[154]  Robert C. Moore A Formal Theory of Knowledge and Action , 1984 .

[155]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[156]  Michael Thielscher,et al.  Inferring Implicit State Knowledge and Plans with Sensing Actions , 2001, KI/ÖGAI.

[157]  Raymond Reiter,et al.  Natural Actions, Concurrency and Continuous Time in the Situation Calculus , 1996, KR.

[158]  Michael L. Littman,et al.  MAXPLAN: A New Approach to Probabilistic Planning , 1998, AIPS.

[159]  Mark A. Peot,et al.  Conditional nonlinear planning , 1992 .

[160]  Gerhard Lakemeyer,et al.  Belief Update in the pGOLOG Framework , 2001, KI/ÖGAI.

[161]  David E. Smith,et al.  Extending Graphplan to handle uncertainty and sensing actions , 1998, AAAI 1998.

[162]  Christian Holzbaur OFAI clp(Q,R) Manual , 1995 .

[163]  Erik Sandewall,et al.  Filter Preferential Entailment for the Logic of Action in Almost Continuous Worlds , 1989, IJCAI.

[164]  Raymond Reiter,et al.  Some contributions to the metatheory of the situation calculus , 1999, JACM.

[165]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[166]  Enrico Giunchiglia,et al.  An Action Language Based on Causal Explanation: Preliminary Report , 1998, AAAI/IAAI.

[167]  Steven A. Vere,et al.  Planning in Time: Windows and Durations for Activities and Goals , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.