Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes.

The goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.

[1]  A. Cuadrado,et al.  Activation of Akt/Protein Kinase B by G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[2]  N. Hay,et al.  The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. , 1997, Genes & development.

[3]  T. McIntosh,et al.  The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. , 1998, The Journal of clinical investigation.

[4]  J. Romashkova,et al.  NF-κB is a target of AKT in anti-apoptotic PDGF signalling , 1999, Nature.

[5]  R. Virmani,et al.  Apoptosis in myocytes in end-stage heart failure. , 1996, The New England journal of medicine.

[6]  AC Tose Cell , 1993, Cell.

[7]  U. Kikkawa,et al.  Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. , 1999, Biochemical and biophysical research communications.

[8]  R. Lefkowitz,et al.  Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. , 1994, Science.

[9]  R. Lefkowitz,et al.  Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signaling. , 1994, The Journal of biological chemistry.

[10]  E. Lakatta,et al.  Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. , 1999, Circulation research.

[11]  Catherine Communal,et al.  Opposing Effects of β1- and β2-Adrenergic Receptors on Cardiac Myocyte Apoptosis Role of a Pertussis Toxin–Sensitive G Protein , 1999 .

[12]  M. Lohse,et al.  Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Lefkowitz,et al.  Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Lefkowitz,et al.  Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. R. Datta,et al.  Cellular survival: a play in three Akts. , 1999, Genes & development.

[16]  B. Hemmings Akt Signaling--Linking Membrane Events to Life and Death Decisions , 1997, Science.

[17]  S. Vatner,et al.  Apoptosis of Cardiac Myocytes in Gsα Transgenic Mice , 1999 .

[18]  R. Lefkowitz,et al.  Phosphatidylinositol 3-Kinase Is an Early Intermediate in the Gβγ-mediated Mitogen-activated Protein Kinase Signaling Pathway (*) , 1996, The Journal of Biological Chemistry.

[19]  E. Kandel,et al.  Akt/Protein Kinase B Inhibits Cell Death by Preventing the Release of Cytochrome c from Mitochondria , 1999, Molecular and Cellular Biology.

[20]  R. Kitsis,et al.  Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. , 2000, Circulation.

[21]  M. Raynolds,et al.  Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. , 2000, Journal of molecular and cellular cardiology.

[22]  P. Anversa,et al.  Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. , 1996, Journal of molecular and cellular cardiology.

[23]  B. Kobilka,et al.  β2-Adrenergic Receptor-induced p38 MAPK Activation Is Mediated by Protein Kinase A Rather than by Gi or Gβγ in Adult Mouse Cardiomyocytes* , 2000, The Journal of Biological Chemistry.

[24]  R. Hajjar,et al.  Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. , 1999, Circulation.

[25]  G. Dorn,et al.  Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. , 2000, Circulation.

[26]  L. Gaboury,et al.  Apoptosis in pressure overload-induced heart hypertrophy in the rat. , 1996, The Journal of clinical investigation.

[27]  E. Lakatta,et al.  Recent Advances in Cardiac b2-Adrenergic Signal Transduction , 1999 .

[28]  J. Cohn,et al.  Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. , 1984, The New England journal of medicine.

[29]  W. Koch,et al.  Gβγ-dependent Phosphoinositide 3-Kinase Activation in Hearts with in Vivo Pressure Overload Hypertrophy* , 2000, The Journal of Biological Chemistry.

[30]  F. Pecker,et al.  Evidence for a beta2-adrenergic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the beta1-adrenergic/camp pathway. , 1999, The Journal of biological chemistry.

[31]  M. Bristow,et al.  Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. , 1996, Circulation.

[32]  G. Dorn,et al.  Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice , 1999 .

[33]  C A Beltrami,et al.  Apoptosis in the failing human heart. , 1997, The New England journal of medicine.

[34]  E. Lucchinetti,et al.  β-Adrenergic Receptor Subtypes Differentially Affect Apoptosis in Adult Rat Ventricular Myocytes , 2000 .

[35]  E. Lakatta,et al.  Gi Protein-mediated Functional Compartmentalization of Cardiac β2-Adrenergic Signaling* , 1999, The Journal of Biological Chemistry.

[36]  E. Lakatta,et al.  Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. , 1995, Molecular pharmacology.

[37]  S. R. Datta,et al.  Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery , 1997, Cell.

[38]  David R. Kaplan,et al.  Direct Regulation of the Akt Proto-Oncogene Product by Phosphatidylinositol-3,4-bisphosphate , 1997, Science.

[39]  D. Pimentel,et al.  Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. , 1998, Circulation.

[40]  W. Colucci,et al.  p38 Mitogen-activated Protein Kinase Pathway Protects Adult Rat Ventricular Myocytes against β-Adrenergic Receptor-stimulated Apoptosis , 2000, The Journal of Biological Chemistry.

[41]  E. Lakatta,et al.  The β2-Adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-Dependent coupling to phosphatidylinositol 3'-kinase , 2000 .

[42]  J. Wroblewski,et al.  Rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. , 1998, Molecular pharmacology.

[43]  Robert J. Lefkowitz,et al.  Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A , 1997, Nature.