On parameter-dependent Lyapunov functions for robust stability of linear systems

For a linear system affected by real parametric uncertainty, this paper focuses on robust stability analysis via quadratic-in-the-state Lyapunov functions polynomially dependent on the parameters. The contribution is twofold. First, if n denotes the system order and m the number of parameters, it is shown that it is enough to seek a parameter-dependent Lyapunov function of given degree 2nm in the parameters. Second, it is shown that robust stability can be assessed by globally minimizing a multivariate scalar polynomial related with this Lyapunov matrix. A hierarchy of LMI relaxations is proposed to solve this problem numerically, yielding simultaneously upper and lower bounds on the global minimum with guarantee of asymptotic convergence.

[1]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[2]  P. Parks A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[6]  B. R. Barmish,et al.  Stability of a polytope of matrices: counterexamples , 1988 .

[7]  Thomas Kailath,et al.  Generalized Bezoutians and families of efficient zero-location procedures , 1991 .

[8]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[9]  V. Hahn,et al.  Stability theory , 1993 .

[10]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[11]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[12]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  P. Apkarian,et al.  Parametrized LMIs in control theory , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[16]  A. T. Neto Parameter dependent Lyapunov functions for a class of uncertain linear systems: an LMI approach , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[17]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[18]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[19]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[20]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..

[21]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[22]  Pierre-Alexandre Bliman,et al.  Nonconservative LMI approach to robust stability for systems with uncertain scalar parameters , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[23]  Graziano Chesi,et al.  Robust analysis of linear systems affected by time-invariant hypercubic parametric uncertainty , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[24]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[25]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[26]  Valter J. S. Leite,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[27]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[28]  J. Lasserre,et al.  Convergent LMI relaxations for non-convex optimization over polynomials in control , 2004 .

[29]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[30]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[31]  Etienne de Klerk,et al.  Global optimization of rational functions: a semidefinite programming approach , 2006, Math. Program..