On parameter-dependent Lyapunov functions for robust stability of linear systems
暂无分享,去创建一个
[1] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[2] P. Parks. A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Peter Lancaster,et al. The theory of matrices , 1969 .
[4] F. R. Gantmakher. The Theory of Matrices , 1984 .
[5] D. Siljak. Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.
[6] B. R. Barmish,et al. Stability of a polytope of matrices: counterexamples , 1988 .
[7] Thomas Kailath,et al. Generalized Bezoutians and families of efficient zero-location procedures , 1991 .
[8] B. Ross Barmish,et al. New Tools for Robustness of Linear Systems , 1993 .
[9] V. Hahn,et al. Stability theory , 1993 .
[10] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[11] Vladimir A. Yakubovich,et al. Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..
[12] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[13] E. Feron,et al. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..
[14] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[15] P. Apkarian,et al. Parametrized LMIs in control theory , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[16] A. T. Neto. Parameter dependent Lyapunov functions for a class of uncertain linear systems: an LMI approach , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[17] J. Geromel,et al. A new discrete-time robust stability condition , 1999 .
[18] J. Bernussou,et al. A new robust D-stability condition for real convex polytopic uncertainty , 2000 .
[19] John N. Tsitsiklis,et al. A survey of computational complexity results in systems and control , 2000, Autom..
[20] Pierre Apkarian,et al. Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..
[21] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[22] Pierre-Alexandre Bliman,et al. Nonconservative LMI approach to robust stability for systems with uncertain scalar parameters , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[23] Graziano Chesi,et al. Robust analysis of linear systems affected by time-invariant hypercubic parametric uncertainty , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[24] Didier Henrion,et al. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.
[25] Pablo A. Parrilo,et al. Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.
[26] Valter J. S. Leite,et al. An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, Proceedings of the 2003 American Control Conference, 2003..
[27] J. Lasserre,et al. Solving nonconvex optimization problems , 2004, IEEE Control Systems.
[28] J. Lasserre,et al. Convergent LMI relaxations for non-convex optimization over polynomials in control , 2004 .
[29] Markus Schweighofer,et al. Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..
[30] Carsten W. Scherer,et al. LMI Relaxations in Robust Control , 2006, Eur. J. Control.
[31] Etienne de Klerk,et al. Global optimization of rational functions: a semidefinite programming approach , 2006, Math. Program..