Continuous character control with low-dimensional embeddings

Interactive, task-guided character controllers must be agile and responsive to user input, while retaining the flexibility to be readily authored and modified by the designer. Central to a method's ease of use is its capacity to synthesize character motion for novel situations without requiring excessive data or programming effort. In this work, we present a technique that animates characters performing user-specified tasks by using a probabilistic motion model, which is trained on a small number of artist-provided animation clips. The method uses a low-dimensional space learned from the example motions to continuously control the character's pose to accomplish the desired task. By controlling the character through a reduced space, our method can discover new transitions, tractably precompute a control policy, and avoid low quality poses.

[1]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[2]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[3]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[4]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[5]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[6]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[7]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[8]  Jehee Lee,et al.  Precomputing avatar behavior from human motion data , 2004, SCA '04.

[9]  Kari Pulli,et al.  Style translation for human motion , 2005, SIGGRAPH 2005.

[10]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[11]  David J. Fleet,et al.  Priors for people tracking from small training sets , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Tomohiko Mukai,et al.  Geostatistical motion interpolation , 2005, SIGGRAPH '05.

[13]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[14]  Hyun Joon Shin,et al.  Motion synthesis and editing in low‐dimensional spaces , 2006, Comput. Animat. Virtual Worlds.

[15]  Joaquin Quiñonero Candela,et al.  Local distance preservation in the GP-LVM through back constraints , 2006, ICML.

[16]  Hyun Joon Shin,et al.  Fat graphs: constructing an interactive character with continuous controls , 2006, SCA '06.

[17]  D. Lawrence The Gaussian Process Latent Variable Model , 2006 .

[18]  Liming Xiang,et al.  Kernel-Based Reinforcement Learning , 2006, ICIC.

[19]  Z. Popovic,et al.  Near-optimal character animation with continuous control , 2007, ACM Trans. Graph..

[20]  Neil D. Lawrence,et al.  Learning for Larger Datasets with the Gaussian Process Latent Variable Model , 2007, AISTATS.

[21]  David J. Fleet,et al.  Multifactor Gaussian process models for style-content separation , 2007, ICML '07.

[22]  Nancy S. Pollard,et al.  Responsive characters from motion fragments , 2007, SIGGRAPH 2007.

[23]  Jessica K. Hodgins,et al.  Constraint-based motion optimization using a statistical dynamic model , 2007, SIGGRAPH 2007.

[24]  David J. Fleet,et al.  Topologically-constrained latent variable models , 2008, ICML '08.

[25]  David J. Fleet,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Gaussian Process Dynamical Model , 2007 .

[26]  Matthias Zwicker,et al.  Real-time planning for parameterized human motion , 2008, SCA '08.

[27]  Alla Safonova,et al.  Achieving good connectivity in motion graphs , 2008, SCA '08.

[28]  Bernhard Schölkopf,et al.  Sparse multiscale gaussian process regression , 2008, ICML '08.

[29]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[30]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[31]  Yen-Lin Chen,et al.  Interactive generation of human animation with deformable motion models , 2009, TOGS.

[32]  Trevor Darrell,et al.  Rank priors for continuous non-linear dimensionality reduction , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Ziv Bar-Joseph,et al.  Modeling spatial and temporal variation in motion data , 2009, ACM Trans. Graph..

[34]  Zoran Popović,et al.  Compact character controllers , 2009, SIGGRAPH 2009.

[35]  Alla Safonova,et al.  Human Motion Synthesis with Optimization‐based Graphs , 2010, Comput. Graph. Forum.

[36]  Risi Kondor Diffusion Kernels , 2010 .

[37]  C. Karen Liu,et al.  Synthesis of Responsive Motion Using a Dynamic Model , 2010, Comput. Graph. Forum.

[38]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[39]  Zoran Popović,et al.  Motion fields for interactive character locomotion , 2010, SIGGRAPH 2010.

[40]  Jinxiang Chai,et al.  Physically valid statistical models for human motion generation , 2011, TOGS.