DEFINITION OF THE STIFFNESS MATRIX OF A HIERARCHICAL STRUCTURE BY USING VIRTUAL TESTING AND ARTIFICIAL NEURAL NETWORKS

[1]  B. Schrefler,et al.  ANN approach to sorption hysteresis within a coupled hygro‐thermo‐mechanical FE analysis , 2001 .

[2]  D. Boso,et al.  Numerical Phenomenology: Virtual Testing of the Hierarchical Structure of a Bundle of Strands , 2010 .

[3]  G. Zavarise,et al.  Modeling a multistrand SC cable with an electrical DC lumped network , 2002 .

[4]  B. Schrefler,et al.  Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils , 2005 .

[5]  B. Schrefler,et al.  Analysis of Bending Effects on Performance Degradation of ITER-Relevant $\hbox{Nb}_{3}\hbox{Sn}$ Strand Using the THELMA Code , 2008, IEEE Transactions on Applied Superconductivity.

[6]  P. Wriggers,et al.  Numerical homogenization of hardened cement paste , 2008 .

[7]  M. Lefik,et al.  Thermal and Bending Strain on$rm Nb_3rm Sn$Strands , 2006, IEEE Transactions on Applied Superconductivity.

[8]  B. Schrefler,et al.  Generalized stiffness coefficients for ITER superconducting cables, direct FE modeling and initial configuration , 2010 .

[9]  M. Lefik,et al.  Artificial neural network as an incremental non-linear constitutive model for a finite element code , 2003 .

[10]  Ugo Galvanetto,et al.  Macroscopic damage in periodic composite materials , 2000 .

[11]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[12]  Jenq-Neng Hwang,et al.  Handbook of Neural Network Signal Processing , 2000, IEEE Transactions on Neural Networks.

[13]  Bernhard A. Schrefler,et al.  Artificial Neural Networks in numerical modelling of composites , 2009 .