Mutations in WNT1 cause different forms of bone fragility.

[1]  J. Machan,et al.  Genetic dissection of midbrain dopamine neuron development in vivo. , 2012, Developmental biology.

[2]  F. Alkuraya,et al.  Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation , 2012, Journal of Medical Genetics.

[3]  P. Lapunzina,et al.  Mutations in PLOD2 cause autosomal‐recessive connective tissue disorders within the Bruck syndrome—Osteogenesis imperfecta phenotypic spectrum , 2012, Human mutation.

[4]  K. Garcia,et al.  Structural architecture and functional evolution of Wnts. , 2012, Developmental cell.

[5]  Tom Kamphans,et al.  GeneTalk: an expert exchange platform for assessing rare sequence variants in personal genomes , 2012, Bioinform..

[6]  K. Garcia,et al.  Structural Basis of Wnt Recognition by Frizzled , 2012, Science.

[7]  David M. Evans,et al.  WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk , 2012, PLoS genetics.

[8]  Daniel L. Koller,et al.  Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture , 2012, Nature Genetics.

[9]  P. Frommolt,et al.  Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. , 2012, American journal of human genetics.

[10]  P. Lapunzina,et al.  Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta , 2012, Human mutation.

[11]  Jennifer J Westendorf,et al.  Update on Wnt signaling in bone cell biology and bone disease. , 2012, Gene.

[12]  Joan C. Marini,et al.  New perspectives on osteogenesis imperfecta , 2011, Nature Reviews Endocrinology.

[13]  T. Rachner,et al.  Osteoporosis: now and the future , 2011, The Lancet.

[14]  O. Mäkitie,et al.  Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG) , 2011, European Journal of Human Genetics.

[15]  A. Hoischen,et al.  Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. , 2011, American journal of human genetics.

[16]  P. Lapunzina,et al.  Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. , 2010, American journal of human genetics.

[17]  P. Byers,et al.  Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. , 2010, American journal of human genetics.

[18]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[19]  P. Byers,et al.  Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. , 2010, American journal of human genetics.

[20]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[21]  W. Van Hul,et al.  Sclerosing bone disorders: too much of a good thing. , 2010, Critical reviews in eukaryotic gene expression.

[22]  G. Pals,et al.  PPIB mutations cause severe osteogenesis imperfecta. , 2009, American journal of human genetics.

[23]  S. Aaronson,et al.  Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells , 2009, The Journal of cell biology.

[24]  Kunihiro Matsumoto,et al.  A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation , 2007, Nature Cell Biology.

[25]  F. Glorieux,et al.  Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans , 2007, Human mutation.

[26]  C. Tifft,et al.  Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta , 2007, Nature Genetics.

[27]  F. Glorieux,et al.  CRTAP Is Required for Prolyl 3- Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta , 2006, Cell.

[28]  M. Bouxsein,et al.  In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. , 2005, The Journal of clinical endocrinology and metabolism.

[29]  Minrong Ai,et al.  Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. , 2005, American journal of human genetics.

[30]  S. Ralston,et al.  Genetics of osteoporosis. , 1997, Current rheumatology reports.

[31]  S. Ralston,et al.  Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. , 2003, Bone.

[32]  Miikka Vikkula,et al.  LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.

[33]  L. Raisz Physiology and pathophysiology of bone remodeling. , 1999, Clinical chemistry.

[34]  M. Capecchi,et al.  Swaying is a mutant allele of the proto-oncogene Wnt-1 , 1991, Cell.

[35]  Andrew P. McMahon,et al.  The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain , 1990, Cell.