Protecting data privacy through hard-to-reverse negative databases

The paper extends the idea of negative representations of information for enhancing privacy. Simply put, a set DB of data elements can be represented in terms of its complement set. That is, all the elements not in DB are depicted and DB itself is not explicitly stored. review the negative database (NDB) representation scheme for storing a negative image compactly and propose a design for depicting a multiple record DB using a collection of NDBs—in contrast to the single NDB approach of previous work. Finally, we present a method for creating negative databases that are hard to reverse in practice, i.e., from which it is hard to obtain DB, by adapting a technique for generating 3-SAT formulas.

[1]  Josh Benaloh,et al.  One-Way Accumulators: A Decentralized Alternative to Digital Sinatures (Extended Abstract) , 1994, EUROCRYPT.

[2]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[3]  Rafail Ostrovsky,et al.  Efficient Consistency Proofs for Generalized Queries on a Committed Database , 2004, ICALP.

[4]  Catherine A. Meadows,et al.  A Database Encryption Scheme Which Allows the Computation of Statistics Using Encrypted Data , 1985, 1985 IEEE Symposium on Security and Privacy.

[5]  Dorothy E. Denning,et al.  A fast procedure for finding a tracker in a statistical database , 1980, TODS.

[6]  Ramakrishnan Srikant,et al.  Privacy-preserving data mining , 2000, SIGMOD '00.

[7]  T. Walsh,et al.  Arc Consistency and Quasigroup Completion , 2006 .

[8]  Benny Pinkas,et al.  Efficient Private Matching and Set Intersection , 2004, EUROCRYPT.

[9]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[10]  Dorothy E. Denning,et al.  Inference Controls for Statistical Databases , 1983, Computer.

[11]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[12]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[13]  Paul Helman,et al.  On-line Negative Databases , 2005, Int. J. Unconv. Comput..

[14]  Jan Camenisch,et al.  Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials , 2002, CRYPTO.

[15]  Bart Selman,et al.  Balance and Filtering in Structured Satisfiable Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[16]  Dorothy E. Denning,et al.  Cryptography and Data Security , 1982 .

[17]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[18]  Manuel Blum,et al.  An Efficient Probabilistic Public-Key Encryption Scheme Which Hides All Partial Information , 1985, CRYPTO.

[19]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[20]  Paul Helman,et al.  On-line Negative Databases , 2004, Int. J. Unconv. Comput..

[21]  Nabil R. Adam,et al.  Security-control methods for statistical databases: a comparative study , 1989, ACM Comput. Surv..

[22]  Moni Naor,et al.  Universal one-way hash functions and their cryptographic applications , 1989, STOC '89.

[23]  Peter J. Denning,et al.  The tracker: a threat to statistical database security , 1979, TODS.

[24]  Richard J. Lipton,et al.  Secure databases: protection against user influence , 1979, TODS.

[25]  Paul Helman,et al.  Enhancing Privacy through Negative Representations of Data , 2004 .

[26]  Norman S. Matloff,et al.  A modified random perturbation method for database security , 1994, TODS.

[27]  Norman S. Matloff,et al.  Inference Control Via Query Restriction Vs. Data Modification: A Perspective , 1988, DBSec.

[28]  Cristopher Moore,et al.  Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively , 2005, AAAI.

[29]  Bart Selman,et al.  Balance and Filtering in Structured Satisfiable Problems , 2001, IJCAI.

[30]  Yacov Yacobi,et al.  Cryptocomplexity and NP-Completeness , 1980, ICALP.

[31]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[32]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[33]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[34]  Fabio Massacci,et al.  How to fake an RSA signature by encoding modular root finding as a SAT problem , 2003, Discret. Appl. Math..

[35]  Charu C. Aggarwal,et al.  On the design and quantification of privacy preserving data mining algorithms , 2001, PODS.

[36]  Andrew Odlyzko,et al.  The Rise and Fall of Knapsack Cryptosystems , 1998 .

[37]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[38]  Francis Y. L. Chin,et al.  Security problems on inference control for SUM, MAX, and MIN queries , 1986, JACM.

[39]  Joan Feigenbaum,et al.  Cryptographic Protection of Databases and Software , 1989, Distributed Computing And Cryptography.

[40]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[41]  Silvio Micali,et al.  Zero-knowledge sets , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[42]  Moni Naor,et al.  Efficient cryptographic schemes provably as secure as subset sum , 1989, 30th Annual Symposium on Foundations of Computer Science.

[43]  Toby Walsh,et al.  The SAT Phase Transition , 1994, ECAI.

[44]  Alexandre V. Evfimievski,et al.  Information sharing across private databases , 2003, SIGMOD '03.