Intracellular allosteric antagonism of the CCR9 receptor

[1]  J. Changeux,et al.  Allosteric modulation as a unifying mechanism for receptor function and regulation , 2017, Diabetes, obesity & metabolism.

[2]  Johannes Söding,et al.  The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis , 2016, Nucleic Acids Res..

[3]  S. P. Andrews,et al.  Extra-helical binding site of a glucagon receptor antagonist , 2016, Nature.

[4]  S. Keshav,et al.  CCR9 antagonism: potential in the treatment of Inflammatory Bowel Disease , 2015, Clinical and experimental gastroenterology.

[5]  L. Kremer,et al.  Chemokine Receptor-Specific Antibodies in Cancer Immunotherapy: Achievements and Challenges , 2015, Front. Immunol..

[6]  R. Solari,et al.  "Chemokine receptors as therapeutic targets: Why aren't there more drugs?". , 2015, European journal of pharmacology.

[7]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[8]  Benjamin G Tehan,et al.  Unifying family A GPCR theories of activation. , 2014, Pharmacology & therapeutics.

[9]  Hualiang Jiang,et al.  Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex , 2013, Science.

[10]  David T. Jones,et al.  Membrane protein orientation and refinement using a knowledge-based statistical potential , 2013, BMC Bioinformatics.

[11]  Ali Jazayeri,et al.  Structure of class B GPCR corticotropin-releasing factor receptor 1 , 2013, Nature.

[12]  K. Diederichs,et al.  Better models by discarding data? , 2013, Acta crystallographica. Section D, Biological crystallography.

[13]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[14]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[15]  T. Wilkin,et al.  CCR5 antagonism in HIV infection: current concepts and future opportunities. , 2012, Annual review of medicine.

[16]  Xavier Deupi,et al.  Structural insights into agonist-induced activation of G-protein-coupled receptors. , 2011, Current opinion in structural biology.

[17]  R. Tal-Singer,et al.  SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. , 2011, British journal of clinical pharmacology.

[18]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[19]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[20]  J. Pease Targeting chemokine receptors in allergic disease. , 2011, The Biochemical journal.

[21]  Nathan Robertson,et al.  The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery , 2011, Neuropharmacology.

[22]  Pallavi Sachdev,et al.  Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells , 2010, Proceedings of the National Academy of Sciences.

[23]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[24]  Yu Wang,et al.  Characterization of CCX282-B, an Orally Bioavailable Antagonist of the CCR9 Chemokine Receptor, for Treatment of Inflammatory Bowel Disease , 2010, Journal of Pharmacology and Experimental Therapeutics.

[25]  S. Charlton,et al.  A common intracellular allosteric binding site for antagonists of the CXCR2 receptor , 2010, British journal of pharmacology.

[26]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[29]  R. Leurs,et al.  Nonpeptidergic Allosteric Antagonists Differentially Bind to the CXCR2 Chemokine Receptor , 2009, Journal of Pharmacology and Experimental Therapeutics.

[30]  D. Nicholls,et al.  Identification of a Putative Intracellular Allosteric Antagonist Binding-Site in the CXC Chemokine Receptors 1 and 2 , 2008, Molecular Pharmacology.

[31]  K. Wreggett,et al.  An Intracellular Allosteric Site for a Specific Class of Antagonists of the CC Chemokine G Protein-Coupled Receptors CCR4 and CCR5 , 2008, Molecular Pharmacology.

[32]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[33]  M. Billah,et al.  Pharmacological Characterization of Sch527123, a Potent Allosteric CXCR1/CXCR2 Antagonist , 2007, Journal of Pharmacology and Experimental Therapeutics.

[34]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[35]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[36]  M. Thelen,et al.  Dancing to the tune of chemokines , 2001, Nature Immunology.

[37]  R. Horuk,et al.  Chemokine Receptor Antagonists , 2000, Medicinal research reviews.

[38]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[39]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[40]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.