Numerical Shockwave Anomalies

[1]  Robert W. MacCormack,et al.  The Carbuncle CFD Problem , 2011 .

[2]  S. Penner Physics of shock waves and high-temperature hydrodynamic phenomena - Ya.B. Zeldovich and Yu.P. Raizer (translated from the Russian and then edited by Wallace D. Hayes and Ronald F. Probstein); Dover Publications, New York, 2002, 944 pp., $34. , 2003 .

[3]  Eric Johnsen,et al.  Analysis and Correction of Errors Generated by Slowly Moving Shocks , 2011 .

[4]  Farzad Ismail,et al.  Toward a reliable prediction of shocks in hypersonic flow: Resolving carbuncles with entropy and vorticity control , 2006 .

[5]  Timothy J. Barth Some notes on shock resolving flux functions. Part 1: Stationary characteristics , 1989 .

[6]  James Ralston,et al.  Discrete shock profiles for systems of conservation laws , 1979 .

[7]  P. Lax,et al.  Systems of conservation laws , 1960 .

[8]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[9]  HI,et al.  The Effects of Numerical Viscosities I . Slowly Moving Shocks , 1996 .

[10]  Yu-Xin Ren,et al.  A robust shock-capturing scheme based on rotated Riemann solvers , 2003 .

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[13]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[14]  Ashley F. Emery,et al.  An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems , 1968 .

[15]  Philip L. Roe,et al.  On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows , 1997 .

[16]  Sean James Henderson,et al.  Study of the issues of computational aerothermodynamics using a Riemann solver , 2008 .

[17]  R. LeVeque Wave Propagation Algorithms for Multidimensional Hyperbolic Systems , 1997 .

[18]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[19]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[20]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[21]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[22]  Robert B. Lowrie,et al.  Compact higher-order numerical methods for hyperbolic conservation laws. , 1996 .

[23]  Claus-Dieter Munz,et al.  On Godunov-type schemes for Lagrangian gas dynamics , 1994 .

[24]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[25]  Kun Xu,et al.  Does perfect Riemann solver exist , 1999 .

[26]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[27]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[28]  Anders Szepessy,et al.  On shock wave stability , 1992 .

[29]  Michael Dumbser,et al.  A matrix stability analysis of the carbuncle phenomenon , 2004 .

[30]  Noh's constant-velocity shock problem revisited , 1997 .

[31]  S. K. Lele,et al.  Numerical errors generated in simulations of slowly moving shocks , 2008 .

[32]  Alberto Bressan,et al.  An instability of the Godunov scheme , 2005 .

[33]  Friedemann Kemm,et al.  A Carbuncle Free Roe-Type Solver for the Euler Equations , 2008 .

[34]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[35]  Keiichi Kitamura,et al.  Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers , 2008, J. Comput. Phys..

[36]  Chongam Kim,et al.  Cures for the shock instability: development of a shock-stable Roe scheme , 2003 .

[37]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[38]  Philip L. Roe,et al.  On carbuncles and other excrescences , 2005 .

[39]  Meng-Sing Liou,et al.  Mass Flux Schemes and Connection to Shock Instability , 2000 .

[40]  In-Seuck Jeung,et al.  Realization of contact resolving approximate Riemann solvers for strong shock and expansion flows , 2009 .

[41]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[42]  Jishan Hu,et al.  Projection Dynamics in Godunov-Type Schemes , 1998 .

[43]  P. Woodward Piecewise-parabolic methods for astrophysical fluid dynamics , 1986 .

[44]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[45]  Smadar Karni,et al.  Computations of Slowly Moving Shocks , 1997 .

[46]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[47]  A. Bressan,et al.  Convergence of the Godunov scheme for straight line systems , 2001 .

[48]  Meng-Sing Liou Open Problems in Numerical Fluxes: Proposed Resolutions , 2011 .

[49]  Jean-Marc Moschetta,et al.  Shock wave numerical structure and the carbuncle phenomenon , 2005 .

[50]  Antonio Marquina,et al.  Capturing Shock Reflections , 1996 .

[51]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[52]  Ronald Fedkiw,et al.  An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows , 1999 .

[53]  P. Roe,et al.  Shock waves and rarefaction waves in magnetohydrodynamics. Part 1. A model system , 1997, Journal of Plasma Physics.

[54]  Volker Elling,et al.  The carbuncle phenomenon is incurable , 2009 .

[55]  Philip L. Roe,et al.  Fluctuations and signals - a framework for numerical evolution problems. , 1800 .

[56]  Thomas W. Roberts,et al.  The behavior of flux difference splitting schemes near slowly moving shock waves , 1990 .

[57]  Renato Paciorri,et al.  Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique , 2011, J. Comput. Phys..

[58]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[59]  I. Cameron An analysis of the errors caused by using artificial viscosity terms to represent steady-state shock waves , 1966 .

[60]  Tai-Ping Liu,et al.  Continuum shock profiles for discrete conservation laws I: Construction , 1999 .

[61]  B. Temple Systems of conservation laws with invariant submanifolds , 1983 .

[62]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[63]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[64]  Ralph Menikoff,et al.  Errors When Shock Waves Interact Due to Numerical Shock Width , 1994, SIAM J. Sci. Comput..

[65]  Gunilla Kreiss,et al.  A note on the effect of artificial viscosity on solutions of conservation , 1996 .

[66]  M. Carpenter,et al.  Accuracy of Shock Capturing in Two Spatial Dimensions , 1999 .

[67]  Wai How Hui,et al.  ON CONTACT OVERHEATING AND OTHER COMPUTATIONAL DIFFICULTIES OF SHOCK-CAPTURING METHODS , 2002 .

[68]  S. Imlay,et al.  Blunt-body flow simulations , 1988 .

[69]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[70]  Jean-Yves Trépanier,et al.  A Conservative Shock Fitting Method on Unstructured Grids , 1996 .

[71]  Paul Glaister,et al.  An approximate linearised Riemann solver for the Euler equations for real gases , 1988 .

[72]  Ralph Menikoff Numerical anomalies mimicking physical effects , 1995 .

[73]  M. D. Salas,et al.  Shock Fitting Method for Complicated Two-Dimensional Supersonic Flows , 1976 .

[74]  Tai-Ping Liu,et al.  CONTINUUM SHOCK PROFILES FOR DISCRETE CONSERVATION LAWS II: STABILITY , 1999 .

[75]  N. N. Yanenko,et al.  Systems of Quasilinear Equations and Their Applications to Gas Dynamics , 1983 .

[76]  Manuel D. Salas,et al.  A Shock-Fitting Primer , 2009 .

[77]  R. LeVeque Numerical methods for conservation laws , 1990 .

[78]  Luiz F. Azevedo,et al.  Further Investigation into the Origin of the Carbuncle Phenomenon in Aerodynamic Simulations , 2011 .

[79]  Eiji Shima,et al.  On AUSM-Family Scheme for All Speeds with Shock Detection for Carbuncle-Fix , 2009 .

[80]  Denis Serre,et al.  Unstable Godunov Discrete Profiles for Steady Shock Waves , 1998 .

[81]  Kun Xu,et al.  Numerical Navier-Stokes solutions from gas kinetic theory , 1994 .

[82]  Philip L. Roe,et al.  Shock Capturing Anomalies and the Jump Conditions in One Dimension , 2011 .

[83]  William J. Rider,et al.  Revisiting Wall Heating , 2000 .

[84]  R. Donat,et al.  A numerical study of postshock oscillations in slowly moving shock waves , 2003 .

[85]  Keiichi Kitamura,et al.  Evaluation of Euler Fluxes for Hypersonic Flow Computations , 2009 .

[86]  Eiji Shima,et al.  Three-Dimensional Carbuncles and Euler Fluxes , 2010 .

[87]  Renato Paciorri,et al.  A shock-fitting technique for 2D unstructured grids , 2009 .

[88]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[89]  Philip L. Roe,et al.  Computational fluid dynamics—retrospective and prospective , 2005 .

[90]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[91]  Zhouping Xin,et al.  Nonlinear stability of discrete shocks for systems of conservation laws , 1993 .

[92]  M. Carpenter,et al.  On accuracy of adaptive grid methods for captured shocks , 2002 .