Adaptive Dynamics with Interaction Structure

Evolutionary dynamics depend critically on a population’s interaction structure—the pattern of which individuals interact with which others, depending on the state of the population and the environment. Previous research has shown, for example, that cooperative behaviors disfavored in well-mixed populations can be favored when interactions occur only between spatial neighbors or group members. Combining the adaptive dynamics approach with recent advances in evolutionary game theory, we here introduce a general mathematical framework for analyzing the long-term evolution of continuous game strategies for a broad class of evolutionary models, encompassing many varieties of interaction structure. Our main result, the canonical equation of adaptive dynamics with interaction structure, characterizes expected evolutionary trajectories resulting from any such model, thereby generalizing a central tool of adaptive dynamics theory. Interestingly, the effects of different interaction structures and update rules on evolutionary trajectories are fully captured by just two real numbers associated with each model, which are independent of the considered game. The first, a structure coefficient, quantifies the effects on selection pressures and thus on the shapes of expected evolutionary trajectories. The second, an effective population size, quantifies the effects on selection responses and thus on the expected rates of adaptation. Applying our results to two social dilemmas, we show how the range of evolutionarily stable cooperative behaviors systematically varies with a model’s structure coefficient.

[1]  Y. Svirezhev,et al.  Diffusion Models of Population Genetics , 1990 .

[2]  M. Nowak,et al.  The evolution of eusociality , 2010, Nature.

[3]  Martin A Nowak,et al.  Evolutionary dynamics in set structured populations , 2009, Proceedings of the National Academy of Sciences.

[4]  Fabio Dercole,et al.  Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications , 2008 .

[5]  Margarita Ifti,et al.  Effects of neighbourhood size and connectivity on the spatial Continuous Prisoner's Dilemma. , 2004, Journal of theoretical biology.

[6]  F. C. Santos,et al.  Scale-free networks provide a unifying framework for the emergence of cooperation. , 2005, Physical review letters.

[7]  M. Nowak,et al.  The evolution of stochastic strategies in the Prisoner's Dilemma , 1990 .

[8]  Corina E. Tarnita,et al.  Measures of success in a class of evolutionary models with fixed population size and structure , 2014, Journal of mathematical biology.

[9]  Ulf Dieckmann,et al.  Adaptive Evolution of Social Traits: Origin, Trajectories, and Correlations of Altruism and Mobility , 2004, The American Naturalist.

[10]  A. Sasaki,et al.  ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Géza Meszéna,et al.  Adaptive dynamics for physiologically structured population models , 2008, Journal of mathematical biology.

[12]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[13]  George R. Price,et al.  Selection and Covariance , 1970, Nature.

[14]  E. Herre Population Structure and the Evolution of Virulence in Nematode Parasites of Fig Wasps , 1993, Science.

[15]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[16]  J. Metz,et al.  How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Troy Day,et al.  From inclusive fitness to fixation probability in homogeneous structured populations. , 2007, Journal of theoretical biology.

[18]  M. Nowak,et al.  Tit for tat in heterogeneous populations , 1992, Nature.

[19]  Arne Traulsen,et al.  How mutation affects evolutionary games on graphs. , 2012, Journal of theoretical biology.

[20]  Mats Gyllenberg,et al.  Evolutionary suicide and evolution of dispersal in structured metapopulations , 2002, Journal of mathematical biology.

[21]  B. Simon A stochastic model of evolutionary dynamics with deterministic large-population asymptotics. , 2008, Journal of theoretical biology.

[22]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[23]  M. Nowak,et al.  Chaos and the evolution of cooperation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M Gyllenberg,et al.  Invasion dynamics and attractor inheritance , 2002, Journal of mathematical biology.

[25]  M. Nowak,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[26]  M. Slatkin,et al.  A Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population , 1986, Heredity.

[27]  M. Doebeli,et al.  Spatial evolutionary game theory: Hawks and Doves revisited , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  D. Queller,et al.  A GENERAL MODEL FOR KIN SELECTION , 1992, Evolution; international journal of organic evolution.

[29]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[30]  H. Ohtsuki,et al.  A simple rule for the evolution of cooperation on graphs and social networks , 2006, Nature.

[31]  P. Taylor Altruism in viscous populations — an inclusive fitness model , 1992, Evolutionary Ecology.

[32]  C. Hauert,et al.  Reputation-based partner choice promotes cooperation in social networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  David G. Rand,et al.  Direct reciprocity in structured populations , 2012, Proceedings of the National Academy of Sciences.

[34]  J. Metz,et al.  The enigma of frequency-dependent selection. , 1998, Trends in ecology & evolution.

[35]  A. Gardner,et al.  Demography, altruism, and the benefits of budding , 2006, Journal of evolutionary biology.

[36]  H. Ohtsuki,et al.  Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. , 2007, Physical review letters.

[37]  M. Boratav,et al.  The enigma of , 1995 .

[38]  David G. Rand,et al.  Dynamic social networks promote cooperation in experiments with humans , 2011, Proceedings of the National Academy of Sciences.

[39]  M. Nowak,et al.  Evolutionary dynamics in structured populations , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Martin A. Nowak,et al.  Stochastic evolutionary dynamics of direct reciprocity , 2010, Proceedings of the Royal Society B: Biological Sciences.

[41]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[42]  G. B. Pollock,et al.  Can altruism evolve in purely viscous populations? , 1992, Evolutionary Ecology.

[43]  P. A. P. Moran,et al.  Random processes in genetics , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  S. Leibler,et al.  Bacterial Persistence , 2005, Genetics.

[45]  M N,et al.  The Evolution of Cooperation in a Lattice-Structured Population , 1996 .

[46]  D. Helbing,et al.  The outbreak of cooperation among success-driven individuals under noisy conditions , 2009, Proceedings of the National Academy of Sciences.

[47]  P. T,et al.  How to Make a Kin Selection Model , 1996 .

[48]  M. Baalen,et al.  The Unit of Selection in Viscous Populations and the Evolution of Altruism. , 1998, Journal of theoretical biology.

[49]  P. Crowley,et al.  Trade‐offs and Spatial Life‐History Strategies in Classical Metapopulations , 2002, The American Naturalist.

[50]  Chaitanya S. Gokhale,et al.  Evolutionary games in the multiverse , 2010, Proceedings of the National Academy of Sciences.

[51]  Stefan A. H. Geritz,et al.  Resident-invader dynamics and the coexistence of similar strategies , 2005, Journal of mathematical biology.

[52]  Sabin Lessard,et al.  The probability of fixation of a single mutant in an exchangeable selection model , 2007, Journal of mathematical biology.

[53]  R. Nisbet,et al.  How should we define 'fitness' for general ecological scenarios? , 1992, Trends in ecology & evolution.

[54]  Akira Sasaki,et al.  Statistical Mechanics of Population , 1992 .

[55]  A. Gardner,et al.  The genetical theory of kin selection , 2011, Journal of evolutionary biology.

[56]  Peter D. Taylor,et al.  Evolution of cooperation in a finite homogeneous graph , 2007, Nature.

[57]  Martin A. Nowak,et al.  Evolution of cooperation by phenotypic similarity , 2008, Proceedings of the National Academy of Sciences.

[58]  C. M. Lessells,et al.  The Evolution of Life Histories , 1994 .

[59]  A. Sasaki,et al.  The evolution of parasite virulence and transmission rate in a spatially structured population. , 2000, Journal of theoretical biology.

[60]  Ángel Sánchez,et al.  Effect of spatial structure on the evolution of cooperation , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Oscar E. Gaggiotti,et al.  Ecology, genetics, and evolution of metapopulations , 2004 .

[62]  Martin A. Nowak,et al.  Evolution of in-group favoritism , 2012, Scientific Reports.

[63]  Hisashi Ohtsuki,et al.  EVOLUTIONARY GAMES IN WRIGHT'S ISLAND MODEL: KIN SELECTION MEETS EVOLUTIONARY GAME THEORY , 2010, Evolution; international journal of organic evolution.

[64]  David C. Krakauer,et al.  Spatial structure and the evolution of honest cost-free signalling , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  G. B. Arous,et al.  The canonical equation of adaptive dynamics: a mathematical view , 2002 .

[66]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.

[67]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[68]  M. Nowak,et al.  The continuous Prisoner's dilemma: II. Linear reactive strategies with noise. , 1999, Journal of theoretical biology.

[69]  P. J. Hudson,et al.  Large Shifts in Pathogen Virulence Relate to Host Population Structure , 2004, Science.

[70]  Odo Diekmann,et al.  On the formulation and analysis of general deterministic structured population models I. Linear Theory , 1998, Journal of mathematical biology.

[71]  G. Hartvigsen Metapopulation biology: Ecology, genetics, and evolution , 1997 .

[72]  Richard E. Michod,et al.  The Theory of Kin Selection , 1982 .

[73]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[74]  Brian J. McGill,et al.  Evolutionary Game Theory and Adaptive Dynamics of Continuous Traits , 2007 .

[75]  Ross Cressman,et al.  The Stability Concept of Evolutionary Game Theory: A Dynamic Approach , 1992 .

[76]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[77]  J. Hofbauer,et al.  Evolutionary game dynamics , 2011 .

[78]  Michael Doebeli,et al.  Spatial structure often inhibits the evolution of cooperation in the snowdrift game , 2004, Nature.

[79]  L. Wahl,et al.  The Effects of Population Bottlenecks on Clonal Interference, and the Adaptation Effective Population Size , 2009, Evolution; international journal of organic evolution.

[80]  D. Fudenberg,et al.  Emergence of cooperation and evolutionary stability in finite populations , 2004, Nature.

[81]  É. Kisdi,et al.  Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree , 2004, Evolutionary Ecology.

[82]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[83]  H. Ohtsuki,et al.  Strategy selection in structured populations. , 2009, Journal of theoretical biology.

[84]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[85]  J. Metz,et al.  Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction , 1995 .

[86]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[87]  G. Price,et al.  Extension of covariance selection mathematics , 1972, Annals of human genetics.

[88]  Michael Doebeli,et al.  A simple and general explanation for the evolution of altruism , 2009, Proceedings of the Royal Society B: Biological Sciences.

[89]  H. B. Wilson,et al.  Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[90]  D. Wilson,et al.  Population viscosity and the evolution of altruism. , 2000, Journal of theoretical biology.

[91]  U. Dieckmann,et al.  THE ADAPTIVE DYNAMICS OF ALTRUISM IN SPATIALLY HETEROGENEOUS POPULATIONS , 2003, Evolution; international journal of organic evolution.

[92]  Jülich Evolutionary Cycling in Predator – Prey Interactions : Population Dynamics and the Red Queen , 1994 .

[93]  A. Gardner Sex-biased dispersal of adults mediates the evolution of altruism among juveniles. , 2010, Journal of theoretical biology.

[94]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[95]  U. Dieckmann,et al.  The Dynamical Theory of Coevolution : A Derivation from Stochastic Ecological Processes , 1996 .

[96]  M. Doebeli,et al.  The Continuous Prisoner’s Dilemma and the Evolution of Cooperation through Reciprocal Altruism with Variable Investment , 2002, The American Naturalist.

[97]  Patrick Forber Evolution and the Levels of Selection , 2008 .

[98]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[99]  Katrin Fehl,et al.  Co-evolution of behaviour and social network structure promotes human cooperation. , 2011, Ecology letters.

[100]  Justin Werfel,et al.  The evolution of reproductive restraint through social communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Long Wang,et al.  Evolution of Cooperation on Stochastic Dynamical Networks , 2010, PloS one.

[102]  Alan Grafen,et al.  Natural selection of altruism in inelastic viscous homogeneous populations. , 2008, Journal of theoretical biology.

[103]  Y. Iwasa,et al.  Establishment probability in fluctuating environments: a branching process model. , 1996, Theoretical population biology.

[104]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[105]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[106]  M. Baalen Adaptive Dynamics of Infectious Diseases: Contact Networks and the Evolution of Virulence , 2002 .

[107]  M. Nowak,et al.  Evolution of cooperation by multilevel selection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[108]  M. Keeling,et al.  Disease evolution on networks: the role of contact structure , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[109]  L M Wahl,et al.  The Continuous Prisoner:s Dilemma: I. Linear Reactive Strategies , 1999 .

[110]  T. Vincent,et al.  A theory for the evolutionary game , 1987 .

[111]  M. Baalen,et al.  Self-structuring in spatial evolutionary ecology. , 2008, Ecology letters.

[112]  Arne Traulsen,et al.  Pairwise comparison and selection temperature in evolutionary game dynamics. , 2007, Journal of theoretical biology.

[113]  W. Hamilton Geometry for the selfish herd. , 1971, Journal of theoretical biology.

[114]  O. Diekmann,et al.  Physiologically Structured Population Models: Towards a General Mathematical Theory , 2007 .

[115]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[116]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[117]  F. Rousset Genetic Structure and Selection in Subdivided Populations (MPB-40) , 2004 .

[118]  Martin A Nowak,et al.  Multiple strategies in structured populations , 2011, Proceedings of the National Academy of Sciences.

[119]  J. Hofbauer,et al.  Adaptive dynamics and evolutionary stability , 1990 .

[120]  T. Day,et al.  What can Invasion Analyses Tell us about Evolution under Stochasticity in Finite Populations , 2002 .

[121]  U. Dieckmann,et al.  The adaptive dynamics of function-valued traits. , 2006, Journal of theoretical biology.

[122]  M. Doebeli,et al.  Variable investment, the Continuous Prisoner's Dilemma, and the origin of cooperation , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[123]  S. M. Verduyn Lunel,et al.  Stochastic and spatial structures of dynamical systems , 1996 .

[124]  L. Cavalli-Sforza,et al.  Assortment of encounters and evolution of cooperativeness. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[125]  A. Grant,et al.  Life History Evolution , 2002, Heredity.

[126]  Martin A Nowak,et al.  Evolutionary shift dynamics on a cycle. , 2012, Journal of theoretical biology.

[127]  Akira Sasaki,et al.  Parasite‐Driven Extinction in Spatially Explicit Host‐Parasite Systems , 2002, The American Naturalist.

[128]  R. Ferrière,et al.  Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. , 2006, Theoretical population biology.

[129]  V. Baalen Contact Networks and the Evolution of Virulence Minus , 2004 .

[130]  Andy Gardner,et al.  Is Bacterial Persistence a Social Trait? , 2007, PloS one.

[131]  M. Nowak Five Rules for the Evolution of Cooperation , 2006, Science.

[132]  M. Kimura,et al.  The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. , 1964, Genetics.

[133]  R. Ferrière,et al.  Invasion fitness and adaptive dynamics in spatial population models , 2001 .

[134]  Warren J. Ewens,et al.  On the concept of the effective population size , 1982 .

[135]  D. Wilson Structured Demes and the Evolution of Group-Advantageous Traits , 1977, The American Naturalist.

[136]  Christine Taylor,et al.  Evolutionary Games , 2010 .

[137]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[138]  Martin A. Nowak,et al.  Calculating Evolutionary Dynamics in Structured Populations , 2009, PLoS Comput. Biol..

[139]  O. Diekmann,et al.  On the formulation and analysis of general deterministic structured population models II. Nonlinear theory , 2000 .

[140]  M. Nowak,et al.  Evolutionary game dynamics in a Wright-Fisher process , 2006, Journal of mathematical biology.

[141]  Arne Traulsen,et al.  Coevolution of strategy and structure in complex networks with dynamical linking. , 2006, Physical review letters.

[142]  H. Ohtsuki,et al.  Evolutionary stability on graphs. , 2008, Journal of theoretical biology.

[143]  B. Huberman,et al.  The outbreak of cooperation , 1993 .