A phase field formulation for hydrogen assisted cracking

[1]  Marco Paggi,et al.  A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model , 2017 .

[2]  Javier Sánchez,et al.  Fracto-surface mobility mechanism in high-strength steel wires , 2017 .

[3]  Emilio Mart'inez-Paneda,et al.  A cohesive zone framework for environmentally assisted fatigue , 2017, 1711.09965.

[4]  Zhiliang Zhang,et al.  Cohesive zone simulation of grain size and misorientation effects on hydrogen embrittlement in nickel , 2017 .

[5]  Marco Paggi,et al.  Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach , 2017 .

[6]  Soheil Soghrati,et al.  A phase field model for simulating the stress corrosion cracking initiated from pits , 2017 .

[7]  S. Natarajan,et al.  Gradient plasticity crack tip characterization by means of the extended finite element method , 2017, 1711.09957.

[8]  George Papazafeiropoulos,et al.  Abaqus2Matlab: A suitable tool for finite element post-processing , 2017, Adv. Eng. Softw..

[9]  W. Curtin,et al.  Hydrogen–vacancy–dislocation interactions in α-Fe , 2017 .

[10]  Marco Paggi,et al.  Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation , 2017, Computational Mechanics.

[11]  S. Natarajan,et al.  Gradient plasticity crack tip characterization by means of the extended finite element method , 2017, Computational Mechanics.

[12]  Tymofiy Gerasimov,et al.  A line search assisted monolithic approach for phase-field computing of brittle fracture , 2016 .

[13]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[14]  C. Landis,et al.  Phase-field modeling of hydraulic fracture , 2016 .

[15]  Emilio Mart'inez-Paneda,et al.  Strain gradient plasticity-based modeling of hydrogen environment assisted cracking , 2016, 1711.06179.

[16]  Soheil Soghrati,et al.  A phase field model for simulating the pitting corrosion , 2016 .

[17]  J. M. Alegre,et al.  Coupled hydrogen diffusion simulation using a heat transfer analogy , 2016 .

[18]  A. Raina,et al.  Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory , 2016 .

[19]  C. F. Niordson,et al.  Strain gradient plasticity modeling of hydrogen diffusion to the crack tip , 2016, 1711.05616.

[20]  C. F. Niordson,et al.  On fracture in finite strain gradient plasticity , 2016, 1711.01081.

[21]  Justin D. Dolph,et al.  Measurement and Modeling of Hydrogen Environment-Assisted Cracking in a Ni-Cu-Al-Ti Superalloy , 2016, Metallurgical and Materials Transactions A.

[22]  A. Turnbull Perspectives on hydrogen uptake, diffusion and trapping , 2015 .

[23]  O. Løvvik,et al.  Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing , 2015 .

[24]  Ying Zhao,et al.  Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles , 2015, 1511.06240.

[25]  Marc Kamlah,et al.  An assessment of the phase field formulation for crack growth , 2015 .

[26]  E. Mart'inez-Paneda,et al.  Modeling damage and fracture within strain-gradient plasticity , 2015, 1710.05374.

[27]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[28]  Dominik Schillinger,et al.  Isogeometric collocation for phase-field fracture models , 2015 .

[29]  C. Moriconi,et al.  Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals , 2014 .

[30]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[31]  N. Fleck,et al.  A fracture criterion for the notch strength of high strength steels in the presence of hydrogen , 2014 .

[32]  Lallit Anand,et al.  Hydrogen in metals: A coupled theory for species diffusion and large elastic–plastic deformations , 2013 .

[33]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[34]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[35]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[36]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[37]  Brian P. Somerday,et al.  A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel , 2010 .

[38]  T. Berstad,et al.  Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel – Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements , 2009 .

[39]  I. Scheider,et al.  Simulation of hydrogen assisted stress corrosion cracking using the cohesive model , 2008 .

[40]  K. Tsuzaki,et al.  Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel , 2005 .

[41]  M. Ortiz,et al.  A quantum-mechanically informed continuum model of hydrogen embrittlement , 2004 .

[42]  E. Carter,et al.  First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals , 2004 .

[43]  J. Scully,et al.  Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel , 2003 .

[44]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[45]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[46]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[47]  D. Lassila,et al.  Hydrogen Embrittlement of Nickel , 1984 .

[48]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[49]  W. Johnson On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids , 1875, Nature.

[50]  John R. Rice,et al.  Mathematical analysis in the mechanics of fracture , 1968 .