Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analy
暂无分享,去创建一个
E. Molina Grima | F. G. Fernández | J. Pérez | E. Grima | J. A. Sánchez Pérez | J. M. Fernández Sevilla | F. G. Acién Fernández | M. M. Rebolloso Fuentes | J. L. García Sánchez | M. Fuentes | J. M. F. Sevilla | J. SAnchez | Emilio Molina Grima | E. M. Grima | F. Fernández
[1] G. Lepage,et al. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. , 1984, Journal of lipid research.
[2] M. Kates,et al. Lipid components of diatoms. , 1966, Biochimica et biophysica acta.
[3] J. G. Sanchez,et al. Cuantificación de ácidos grasos a partir de biomasa microalgal , 1993 .
[4] J. Pérez,et al. Nota. Composición nutritiva de la biomasa de la microalga Porphyridium cruentum / Note. Nutrient composition of the biomass of the microalga Porphyridium cruentum , 2000 .
[5] O. Aozasa,et al. Sustained production of arachidonic and eicosapentaenoic acids by the red alga Porphyridium purpureum cultured in a light/dark cycle , 1992 .
[6] R. Appleby,et al. The distribution and biosynthesis of arachidonic acid in algae , 1969 .
[7] C. Low,et al. Productivity of outdoor algal cultures in enclosed tubular photobioreactor. , 1992, Biotechnology and bioengineering.
[8] A. Vonshak,et al. Photoadaptation, photoinhibition and productivity in the blue‐green alga, Spirulina platensis grown outdoors , 1992 .
[9] Michael A. Borowitzka,et al. Closed algal photobioreactors: Design considerations for large-scale systems , 1996 .
[10] E. Grima,et al. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture , 1999, Biotechnology and bioengineering.
[11] F. G. Fernández,et al. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. , 1997, Biotechnology and bioengineering.
[12] F. G. Fernández,et al. Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor , 1994 .
[13] A. Richmond,et al. The feasibility of mass cultivation of Porphyridium , 1985 .
[14] S. Katoh,et al. Arachidonic acid production by the red alga Porphyridium cruentum , 1983, Biotechnology and bioengineering.
[15] E. Percival,et al. The extracellular polysaccharides of porphyridium cruentum and porphyridium aerugineum , 1979 .
[16] J. Whyte. Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves , 1987 .
[17] Janet R. Stein-Taylor. Culture methods and growth measurements , 1973 .
[18] J. Myers. On the Algae: Thoughts about Physiology and Measurements of Efficiency , 1980 .
[19] R. L. Romero,et al. Radiation field modelling in photoreactors—I. homogeneous media , 1986 .
[20] P. Falkowski. Primary productivity in the sea , 1980 .
[21] John S. Burlew,et al. Algal culture from laboratory to pilot plant. , 1953 .
[22] W. Beckman,et al. Solar Engineering of Thermal Processes , 1985 .
[23] J. Sevilla,et al. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances , 1996 .
[24] J. Sevilla,et al. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance , 1998, Biotechnology and bioengineering.
[25] Yuan-Kun Lee. Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend , 1986 .
[26] G. Torzillo,et al. A two‐plane tubular photobioreactor for outdoor culture of Spirulina , 1993, Biotechnology and bioengineering.
[27] Giuseppe Torzillo,et al. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors , 1991 .
[28] E. Evers,et al. A model for light‐limited continuous cultures: Growth, shading, and maintenance , 1991, Biotechnology and bioengineering.
[29] E. Molina Grima,et al. Outdoor chemostat culture of Phaeodactylum tricornutum UTEX 640 in a tubular photobioreactor for the production of eicosapentaenoic acid , 1994, Biotechnology and Applied Biochemistry.
[30] H. Guterman,et al. A macromodel for outdoor algal mass production , 1990, Biotechnology and bioengineering.
[31] Masahito Taya,et al. Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-cellection device , 1996 .
[32] J. Ramus. THE PRODUCTION OF EXTRACELLULAR POLYSACCHARIDE BY THE UNICELLULAR RED ALGA PORPHYRIDIUM AERUGINEUM 1, 2 , 1972 .
[33] P. Falkowski,et al. Potential enhancement of photosynthetic energy conversion in algal mass culture , 1987, Biotechnology and bioengineering.
[34] E. Molina Grima,et al. A mathematical model of microalgal growth in light-limited chemostat culture , 1994 .
[35] Michael A. Borowitzka,et al. Micro-algal biotechnology. , 1988 .
[36] C. Gudin,et al. Bioconversion of solar energy into organic chemicals by microalgae , 1986 .
[37] Y. Collos,et al. Nitrogen Uptake and Assimilation by Marine Phytoplankton , 1980 .