Probabilistic and average widths of multivariate Sobolev spaces with mixed derivative equipped with the Gaussian measure

We present sharp bounds on the Kolmogorov probabilistic (N, δ)-width and p average N- width of multivariate Sobolev space with mixed derivative MW2r(Td), r = (r1 ..., rd), 1/2 1 is depending only on the eigenvalues of the correlation operator of the measure µ (see (4)).

[1]  David Lee,et al.  Approximation of linear functionals on a banach space with a Gaussian measure , 1986, J. Complex..

[2]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[3]  J. Bowen,et al.  s -numbers in information-based complexity , 1990 .

[4]  Jakob Creutzig,et al.  Relations between Classical, Average, and Probabilistic Kolmogorov Widths , 2002 .

[5]  G. Wasilkowski,et al.  Probabilistic and Average Linear Widths inL∞-Norm with Respect tor-fold Wiener Measure , 1996 .

[6]  Thomas Kühn,et al.  Optimal series representation of fractional Brownian sheets , 2002 .

[7]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[8]  Spassimir H. Paskov,et al.  Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..

[9]  Klaus Ritter,et al.  Approximation and optimization on the Wiener space , 1990, J. Complex..

[10]  Henryk Wozniakowski,et al.  Average case complexity of linear multivariate problems I. Theory , 1992, J. Complex..

[11]  Grzegorz W. Wasilkowski,et al.  On the average complexity of multivariate problems , 1990, J. Complex..

[12]  KOLMOGOROV'S $ (n,\,\delta)$-WIDTHS OF SPACES OF SMOOTH FUNCTIONS , 1994 .

[13]  Yongsheng Sun,et al.  Average Error Bounds of Best Approximation of Continuous Functions on the Wiener Space , 1995, J. Complex..

[14]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[15]  G W Wasilowski,et al.  Information of varying cardinality , 1986 .

[16]  Henryk Wozniakowski Probabilistic setting of information-based complexity , 1986, J. Complex..

[17]  On Estimates of the Kolmogorov Widths of the Classes $$B_{p,q}^r$$ in the Space Lq , 2001 .

[18]  Ye Peixin,et al.  Probabilistic and Average Linear Widths of Sobolev Space with Gaussian Measure in L\infty-Norm , 2003 .

[19]  H. Woxniakowski Information-Based Complexity , 1988 .

[20]  J. Hoffmann-jorgensen Probability in Banach Space , 1977 .

[21]  V. Maiorov Linear Widths of Function Spaces Equipped with the Gaussian Measure , 1994 .

[22]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[23]  David Lee,et al.  Approximation of linear operators on a Wiener space , 1986 .

[24]  Grzegorz W. Wasilkowski,et al.  Average Case Complexity of Multivariate Integration and Function Approximation: An Overview , 1996, J. Complex..

[25]  Charles A. Micchelli,et al.  Orthogonal projections are optimal algorithms , 1984 .

[26]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[27]  Henryk Wozniakowski Average case complexity of linear multivariate problems II. Applications , 1992, J. Complex..

[28]  Stefan Heinrich,et al.  Lower bounds for the complexity of Monte Carlo function approximation , 1992, J. Complex..

[29]  Ye Peixin,et al.  Probabilistic and average linear widths of Sobolev space with Gaussian measure , 2003 .

[30]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .