Probabilistic functional tractography of the human cortex

Single-pulse direct electrical stimulation of cortical regions in patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes induces cortico-cortical potentials that can be used to infer functional and anatomical connectivity. Here, we describe a neuroimaging framework that allows development of a new probabilistic atlas of functional tractography of the human cortex from those responses. This atlas is unique because it allows inference in vivo of the directionality and latency of cortico-cortical connectivity, which are still largely unknown at the human brain level. In this technical note, we include 1535 stimulation runs performed in 35 adult patients. We use a case of frontal lobe epilepsy to illustrate the asymmetrical connectivity between the posterior hippocampal gyrus and the orbitofrontal cortex. In addition, as a proof of concept for group studies, we study the probabilistic functional tractography between the posterior superior temporal gyrus and the inferior frontal gyrus. In the near future, the atlas database will be continuously increased, and the methods will be improved in parallel, for more accurate estimation of features of interest. Generated probabilistic maps will be freely distributed to the community because they provide critical information for further understanding and modelling of large-scale brain networks.

[1]  T L Babb,et al.  Functional connections in the human temporal lobe , 2004, Experimental Brain Research.

[2]  C. Crainiceanu,et al.  Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. , 2005, Brain : a journal of neurology.

[3]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[4]  H. Lüders,et al.  Functional connectivity in the human language system: a cortico-cortical evoked potential study. , 2004, Brain : a journal of neurology.

[5]  P. Kahane,et al.  Manifestations électrocliniques induites par la stimulation électrique intracérébrale par «chocs dans les épilepsies temporales , 1993, Neurophysiologie Clinique/Clinical Neurophysiology.

[6]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.

[7]  J. Isnard,et al.  Hippocampal-orbitofrontal connectivity in human: An electrical stimulation study , 2005, Clinical Neurophysiology.

[8]  C D Binnie,et al.  Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. , 2002, Brain : a journal of neurology.

[9]  J Holsheimer,et al.  Identification of the target neuronal elements in electrical deep brain stimulation , 2000, The European journal of neuroscience.

[10]  Philippe Kahane,et al.  Imaging the seizure onset zone with stereo-electroencephalography. , 2011, Brain : a journal of neurology.

[11]  C. Wilson,et al.  Functional connections in the human temporal lobe , 1990, Experimental Brain Research.

[12]  Catherine Tallon-Baudry,et al.  The many faces of the gamma band response to complex visual stimuli , 2005, NeuroImage.

[13]  Gonzalo Alarcón,et al.  Single‐pulse electrical stimulation helps to identify epileptogenic cortex in children , 2009, Epilepsia.

[14]  Daniel Rueckert,et al.  Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest , 2008, NeuroImage.

[15]  F. Rattay,et al.  The basic mechanism for the electrical stimulation of the nervous system , 1999, Neuroscience.

[16]  Derek K. Jones Studying connections in the living human brain with diffusion MRI , 2008, Cortex.

[17]  J. Parvizi,et al.  Human Neuroscience , 2022 .

[19]  P. Ryvlin,et al.  Evoked potential study of hippocampal efferent projections in the human brain , 2011, Clinical Neurophysiology.

[20]  Andreas Hierlemann,et al.  Impedance characterization and modeling of electrodes for biomedical applications , 2005, IEEE Transactions on Biomedical Engineering.

[21]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[22]  Alon Sinai,et al.  Connectivity between perisylvian and bilateral basal temporal cortices. , 2012, Cerebral cortex.

[23]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[24]  H. Lüders,et al.  Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. , 2006, Brain : a journal of neurology.

[25]  Philippe Kahane,et al.  Preictal short-term plasticity induced by intracerebral 1 Hz stimulation , 2008, NeuroImage.

[26]  S. Chabardès,et al.  Studying Network Mechanisms Using Intracranial Stimulation in Epileptic Patients , 2010, Front. Syst. Neurosci..

[27]  R P Lesser,et al.  The location of speech and writing functions in the frontal language area. Results of extraoperative cortical stimulation. , 1984, Brain : a journal of neurology.

[28]  Bennett A. Landman,et al.  Functional Networks in Temporal-Lobe Epilepsy: A Voxel-Wise Study of Resting-State Functional Connectivity and Gray-Matter Concentration , 2013, Brain Connect..

[29]  Z. Kiss,et al.  Neural substrates of microstimulation‐evoked tingling: a chronaxie study in human somatosensory thalamus , 2003, The European journal of neuroscience.

[30]  R. Wennberg,et al.  Rhythmic cortical EEG synchronization with low frequency stimulation of the anterior and medial thalamus for epilepsy , 2006, Clinical Neurophysiology.

[31]  H. Lüders,et al.  Parieto‐frontal network in humans studied by cortico‐cortical evoked potential , 2012, Human brain mapping.

[32]  J. Bullier,et al.  Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements , 1998, Experimental Brain Research.

[33]  Philippe Kahane,et al.  Invasive EEG in the definition of the seizure onset zone: depth electrodes , 2003 .

[34]  K. Saleem,et al.  Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys , 2005, The Journal of comparative neurology.

[35]  C. D. Binnie,et al.  Frontal and temporal functional connections of the living human brain , 2007, Clinical Neurophysiology.

[36]  F. Mauguière,et al.  Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. , 2009, Cerebral cortex.