Medium induced gluon spectrum in dense inhomogeneous matter

We calculate the spectrum of gluons sourced by the branching of an energetic quark in the presence of an inhomogeneous QCD medium, focusing on the soft radiation limit. We take into account multiple soft interactions between the partons and matter, treating the transverse variations of its parameters within a gradient expansion. Thus, we derive the general form of the medium induced spectrum up to the first order in gradients, and consider its simplifying limits. In particular, we show that to the leading order in matter gradients and using the harmonic approximation for the scattering potential, the full gluon spectrum can be written in a compact closed form suitable for numerical evaluation. The final gluon transverse momentum tends to align along the anisotropy direction, resulting in a non-trivial azimuthal pattern in the jet substructure.

[1]  T. Lappi,et al.  Jet momentum broadening during initial stages in heavy-ion collisions , 2023, Physics Letters B.

[2]  E. Iancu,et al.  Jet polarisation in an anisotropic medium , 2023, Journal of High Energy Physics.

[3]  Xin-Nian Wang,et al.  Quantum partonic transport in QCD matter , 2022, Physical Review D.

[4]  Xin-Nian Wang,et al.  Asymmetric transverse momentum broadening in an inhomogeneous medium , 2022, Physical Review D.

[5]  L. Barreto,et al.  Jet cone radius dependence of $R_{AA}$ and $v_2$ at PbPb 5.02 TeV from JEWEL+$\rm T_RENTo$+v-USPhydro , 2022, 2208.02061.

[6]  C. Salgado,et al.  Jet broadening in flowing matter: Resummation , 2022, Physical Review D.

[7]  I. Vitev,et al.  Jets in Evolving Matter within the Opacity Expansion Approach , 2022, SciPost Physics Proceedings.

[8]  Instituto Superior T'ecnico,et al.  Heavy quarks and jets as probes of the QGP , 2022, Progress in Particle and Nuclear Physics.

[9]  S. Mrówczyński,et al.  Jet quenching in glasma , 2021, Physics Letters B.

[10]  M. Sievert,et al.  Jet drift and collective flow in heavy-ion collisions , 2021, Physical Review D.

[11]  I. Salom,et al.  DREENA-A framework as a QGP tomography tool , 2021, Frontiers in Physics.

[12]  S. Jeon,et al.  Momentum broadening of energetic partons in an anisotropic plasma , 2021, Physical Review C.

[13]  K. Tywoniuk,et al.  Jet Tomography in Heavy-Ion Collisions with Deep Learning. , 2021, Physical review letters.

[14]  K. Tywoniuk,et al.  Medium-induced radiative kernel with the Improved Opacity Expansion , 2021, Journal of High Energy Physics.

[15]  C. Salgado,et al.  Jet quenching test of the QCD matter created at RHIC and the LHC needs opacity-resummed medium induced radiation , 2021 .

[16]  I. Vitev,et al.  Ab initio coupling of jets to collective flow in the opacity expansion approach , 2021, Physical Review D.

[17]  K. Zapp,et al.  Time reclustering for jet quenching studies , 2020, The European Physical Journal C.

[18]  M. Arratia,et al.  Jet-based measurements of Sivers and Collins asymmetries at the future electron-ion collider , 2020, 2007.07281.

[19]  C. Andrés,et al.  Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions , 2020, Journal of High Energy Physics.

[20]  D. Schuh,et al.  Anisotropic momentum broadening in the 2+1D glasma: Analytic weak field approximation and lattice simulations , 2020, 2001.10001.

[21]  L. Pang,et al.  Gradient Tomography of Jet Quenching in Heavy-Ion Collisions. , 2020, Physical review letters.

[22]  A. Sadofyev,et al.  Drag force to all orders in gradients , 2019, Journal of High Energy Physics.

[23]  R. Vazquez,et al.  Intensity of gluon bremsstrahlung in a finite plasma , 2018, Physical Review D.

[24]  W. Busza,et al.  Heavy Ion Collisions: The Big Picture and the Big Questions , 2018, Annual Review of Nuclear and Particle Science.

[25]  G. Salam,et al.  Probing the Time Structure of the Quark-Gluon Plasma with Top Quarks. , 2017, Physical review letters.

[26]  Kiminad A. Mamo,et al.  Jet quenching parameter of the quark-gluon plasma in a strong magnetic field: Perturbative QCD and AdS / CFT correspondence , 2016, 1605.00188.

[27]  L. Živković,et al.  Mass tomography at different momentum ranges in quark-gluon plasma , 2016, 1601.07852.

[28]  Xin-Nian Wang,et al.  Jet quenching in high-energy heavy-ion collisions , 2015, 1511.00790.

[29]  A. Sadofyev,et al.  The charmonium dissociation in an “anomalous wind” , 2015, 1510.06760.

[30]  K. Rajagopal,et al.  Chiral drag force , 2015, 1505.07379.

[31]  Jean-Paul Blaizot,et al.  Jet Structure in Heavy Ion Collisions , 2015, 1503.05958.

[32]  M. Gyulassy,et al.  Azimuthal jet flavor tomography with CUJET2.0 of nuclear collisions at RHIC and LHC , 2014, 1402.2956.

[33]  K. Rajagopal,et al.  Effects of fluid velocity gradients on heavy quark energy loss , 2013, 1311.5577.

[34]  K. Tywoniuk,et al.  Jet physics in heavy-ion collisions , 2013, 1302.2579.

[35]  Jean-Paul Blaizot,et al.  Medium-induced gluon branching , 2012, 1209.4585.

[36]  C. Salgado,et al.  The radiation pattern of a QCD antenna in a dense medium , 2012, Journal of High Energy Physics.

[37]  S. H. Kim,et al.  Suppression of charged particle production at large transverse momentum in central Pb – Pb collisions at √ sNN = 2 . 76 TeV ✩ , 2010 .

[38]  S. Caron-Huot,et al.  Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter , 2010, 1006.2379.

[39]  C. Salgado,et al.  Introductory lectures on jet quenching in heavy ion collisions , 2007, 0712.3443.

[40]  K. J. Foley,et al.  Centrality Dependence of High-pTHadron Suppression inAu+AuCollisions atsNN=130GeV , 2002, nucl-ex/0206011.

[41]  L. Yaffe,et al.  Photon and gluon emission in relativistic plasmas , 2002, hep-ph/0204343.

[42]  Xin-Nian Wang,et al.  Jet Tomography of Dense and Nuclear Matter , 2002 .

[43]  M. Gyulassy,et al.  Reaction operator approach to multiple elastic scatterings , 2002, nucl-th/0201078.

[44]  E. al.,et al.  Suppression of hadrons with large transverse momentum in central Au + Au collisions at √sNN = 130 GeV , 2001, nucl-ex/0109003.

[45]  M. Gyulassy,et al.  Reaction operator approach to non-abelian energy loss , 2000, nucl-th/0006010.

[46]  Urs Achim Wiedemann,et al.  Gluon radiation off hard quarks in a nuclear environment: opacity expansion , 2000, hep-ph/0005129.

[47]  U. Wiedemann Transverse dynamics of hard partons in nuclear media and the QCD dipole , 2000, hep-ph/0003021.

[48]  Y. Dokshitzer,et al.  Radiative energy loss of high-energy quarks and gluons in a finite volume quark - gluon plasma , 1997 .

[49]  B.G.Zakharov Fully quantum treatment of the Landau--Pomeranchuk--Migdal effect in QED and QCD , 1996, hep-ph/9607440.

[50]  Xin-Nian Wang,et al.  Multiple collisions and induced gluon Bremsstrahlung in QCD , 1993, nucl-th/9306003.