The enriched effect calculus: syntax and semantics
暂无分享,去创建一个
[1] Paul Blain Levy,et al. Adjunction Models For Call-By-Push-Value With Stacks , 2003, CTCS.
[2] G. M. Kelly,et al. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.
[3] Paul Blain Levy,et al. Call-By-Push-Value: A Functional/Imperative Synthesis , 2003, Semantics Structures in Computation.
[4] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[5] Rasmus Ejlers Møgelberg,et al. Enriching an Effect Calculus with Linear Types , 2009, CSL.
[6] Peter W. O'Hearn,et al. Linear Continuation-Passing , 2002, High. Order Symb. Comput..
[7] A. Kock. Monads on symmetric monoidal closed categories , 1970 .
[8] Masahito Hasegawa. Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus , 2001, APLAS.
[9] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[10] Gordon D. Plotkin,et al. Computational Effects and Operations: An Overview , 2004, Electron. Notes Theor. Comput. Sci..
[11] Peter W. O'Hearn,et al. From Algol to polymorphic linear lambda-calculus , 2000, JACM.
[12] Rasmus Ejlers Møgelberg,et al. A Logic for Parametric Polymorphism with Effects , 2007, TYPES.
[13] Rasmus Ejlers Møgelberg,et al. Relational Parametricity for Computational Effects , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[14] Ralph Matthes,et al. Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..
[15] Ian Stark,et al. Reducibility and TT-Lifting for Computation Types , 2005, TLCA.
[16] Alex K. Simpson,et al. The proof theory and semantics of intuitionistic modal logic , 1994 .
[17] F. E. J. Linton,et al. Coequalizers in categories of algebras , 1969 .
[18] Rasmus Ejlers Møgelberg,et al. Linear-use CPS translations in the Enriched Effect Calculus , 2012, Log. Methods Comput. Sci..
[19] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[20] Rasmus Ejlers Møgelberg,et al. Linearly-Used State in Models of Call-by-Value , 2011, CALCO.
[21] D. Prawitz. Ideas and Results in Proof Theory , 1971 .
[22] James Laird,et al. A Logic of Sequentiality , 2010, CSL.
[23] Nick Benton,et al. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.
[24] Rasmus Ejlers Møgelberg,et al. Linearly-Used Continuations in the Enriched Effect Calculus , 2010, FoSSaCS.
[25] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[26] Paul Blain Levy,et al. Call-by-push-value , 2022, ACM SIGLOG News.
[27] Andrew G. Barber,et al. Linear type theories, semantics and action calculi , 1997 .
[28] A. Kock. Strong functors and monoidal monads , 1972 .
[29] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[30] James Laird. A Categorical Semantics of Higher Order Store , 2002, CTCS.
[31] J. Girard,et al. Proofs and types , 1989 .
[32] Rasmus Ejlers Møgelberg,et al. Relational Parametricity for Control Considered as a Computational Effect , 2007, MFPS.
[33] Philip Wadler,et al. Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[34] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.