Prediksi Kunjungan Wisatawan Taman Nasional Gunung Merbabu dengan Time Series Forecasting dan LSTM

Prediction of tourist visits of Mount Merbabu National Park (TNGMb) needs to be done to control the number of visitors and to preserve the national park. The combination of time series forecasting (TSF) and deep learning methods has become a new alternative for prediction. This case study was conducted to implement several methods combination of TSF and Long-Short Term Memory (LSTM) to predict the visits. In this case study, there are 18 modelling scenarios as research objects to determine the best model by utilizing tourist visits data from 2013 to 2018. The results show that the model applying the lag time method can improve the model's ability to capture patterns on time series data. The error value is measured using the root mean square error (RMSE), with the smallest value of 3.7 in the LSTM architecture, using seven lags as a feature and one lag as a label.