Dynamic visual servoing from sequential regions of interest acquisition

One of the main drawbacks of vision-based control that remains unsolved is the poor dynamic performances caused by the low acquisition frequency of the vision systems and the time latency due to processing. We propose in this paper to face the challenge of designing a high-performance dynamic visual servo control scheme. Two versatile control laws are developed in this paper: a position-based dynamic visual servoing and an image-based dynamic visual servoing. Both control laws are designed to compute the control torques exclusively from a sequential acquisition of regions of interest containing the visual features to achieve an accurate trajectory tracking. The presented experiments on vision-based dynamic control of a high-speed parallel robot show that the proposed control schemes can perform better than joint-based computed torque control.

[1]  Markus Vincze,et al.  Dynamics and system performance of visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[3]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[4]  Danica Kragic,et al.  Vision for Robotics , 2009, Found. Trends Robotics.

[5]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[6]  Jacques Gangloff,et al.  Towards robotized beating heart TECABG: Assessment of the heart dynamics using high-speed vision , 2006, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[7]  J. Vaillant An image sensor , 2005 .

[8]  Patrick Rives,et al.  Positioning of a robot with respect to an object, tracking it and estimating its velocity by visual servoing , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[9]  Philippe Lemoine,et al.  A vision-based computed torque control for parallel kinematic machines , 2008, 2008 IEEE International Conference on Robotics and Automation.

[10]  Éric Marchand,et al.  Virtual Visual Servoing: a framework for real‐time augmented reality , 2002, Comput. Graph. Forum.

[11]  Wisama Khalil,et al.  Modeling, Identification & Control of Robots , 2002 .

[12]  Damien Chablat,et al.  Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide , 2003, IEEE Trans. Robotics Autom..

[13]  Wolfgang Ponweiser,et al.  Dynamic Aspects of Visual Servoing and a Framework for Real-Time 3D Vision for Robotics , 2000, Sensor Based Intelligent Robots.

[14]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[15]  Rafael Kelly,et al.  Stable visual servoing of camera-in-hand robotic systems , 2000 .

[16]  Nicolas Andreff,et al.  High-speed pose and velocity measurement from vision , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  Jing Zhang,et al.  Delay dependent stability limits in high performance real-time visual servoing systems , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[18]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[19]  Tim Boye,et al.  New Transformation and Analysis of a N-DOF LINAPOD with six struts for higher accuracy , 2005, Robotica.

[20]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[21]  Peter I. Corke,et al.  Dynamic effects in visual closed-loop systems , 1996, IEEE Trans. Robotics Autom..

[22]  B. Dasgupta,et al.  A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators , 1999 .

[23]  Jean-Pierre Merlet,et al.  Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis , 2004, Int. J. Robotics Res..

[24]  Philippe Martinet,et al.  Efficient high-speed vision-based computed torque control of the orthoglide parallel robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[25]  P. Dietmaier,et al.  The Stewart-Gough Platform of General Geometry can have 40 Real Postures , 1998 .

[26]  Philippe Martinet,et al.  Simultaneous Object Pose and Velocity Computation Using a Single View from a Rolling Shutter Camera , 2006, ECCV.

[27]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[28]  Masatoshi Ishikawa,et al.  Target tracking algorithm for 1 ms visual feedback system using massively parallel processing , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[29]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[30]  Sébastien Krut,et al.  Par4: very high speed parallel robot for pick-and-place , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Philippe Martinet,et al.  A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments , 2009, Int. J. Robotics Res..

[32]  Philippe Martinet,et al.  Dynamic control of the Quattro robot by the leg edges , 2011, 2011 IEEE International Conference on Robotics and Automation.

[33]  Ulrich Muehlmann,et al.  A new high speed cmos camera for real-time tracking applications , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[34]  Massimo Callegari,et al.  Dynamics modelling and control of the 3-RCC translational platform , 2006 .

[35]  Albert J. P. Theuwissen,et al.  An image sensor which captures 100 consecutive frames at 1000000 frames/s , 2003 .

[36]  Wisama Khalil,et al.  General Solution for the Dynamic Modeling of Parallel Robots , 2007, J. Intell. Robotic Syst..

[37]  James P. Ostrowski,et al.  Visual servoing with dynamics: control of an unmanned blimp , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[38]  Jadran Lenarčič,et al.  Advances in Robot Kinematics: Analysis and Control , 1998 .

[39]  Philippe Martinet,et al.  3D pose and velocity visual tracking based on sequential region of interest acquisition , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Jacques Gangloff,et al.  High-speed visual servoing of a 6-d.o.f. manipulator using multivariable predictive control , 2003, Adv. Robotics.

[41]  Philippe Martinet,et al.  Image-Based Visual Servoing of the I4R parallel robot without Proprioceptive Sensors , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[42]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..