Cluster Dynamics Simulation on Microstructure Evolution of Austenitic Stainless Steel and α-Iron Under Cascade Damage Condition

[1]  Normand Mousseau,et al.  Energy landscape of small clusters of self-interstitial dumbbells in iron , 2011 .

[2]  Lorenzo Malerba,et al.  Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods , 2010 .

[3]  H. Matsui,et al.  One-dimensional motion of self-interstitial atom clusters in A533B steel observed using a high-voltage electron microscope , 2010 .

[4]  N. Anento,et al.  Atomistic study of multimechanism diffusion by self-interstitial defects in α-Fe , 2010 .

[5]  H. Matsui,et al.  Obstacles for one-dimensional migration of interstitial clusters in iron , 2009 .

[6]  S. Jitsukawa,et al.  Lowest energy structures of self-interstitial atom clusters in α-iron from a combination of Langevin molecular dynamics and the basin-hopping technique , 2009 .

[7]  C. Domain,et al.  Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models , 2008 .

[8]  Alain Barbu,et al.  Cluster-dynamics modelling of defects in α-iron under cascade damage conditions , 2008 .

[9]  D. Bacon,et al.  Computer simulation of cascade damage in α-iron with carbon in solution , 2008 .

[10]  K. Nordlund,et al.  The effect of C concentration on radiation damage in Fe–Cr–C alloys , 2008 .

[11]  David Bacon,et al.  Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics , 2008 .

[12]  S. Biner,et al.  Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe , 2008 .

[13]  F. Willaime,et al.  Effect of C on Vacancy Migration in α-Iron , 2008 .

[14]  H. Matsui,et al.  Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation , 2008 .

[15]  Lorenzo Malerba,et al.  Simulation of displacement cascades in Fe90Cr10 using a two band model potential , 2008 .

[16]  Hirotaro Mori,et al.  Observation of the One-Dimensional Diffusion of Nanometer-Sized Dislocation Loops , 2007, Science.

[17]  C. Domain,et al.  Atomistic modeling of an Fe system with a small concentration of C , 2007 .

[18]  Lorenzo Malerba,et al.  Dimensionality of interstitial cluster motion in bcc-Fe , 2007 .

[19]  C. J. Ortiz,et al.  He diffusion in irradiated α-Fe : An ab-initio-based rate theory model , 2007 .

[20]  C. Domain,et al.  Dependence of radiation damage accumulation in iron on underlying models of displacement cascades and subsequent defect migration , 2006 .

[21]  J. Wallenius,et al.  Effect of the interatomic potential on the features of displacement cascades in α-Fe: A molecular dynamics study , 2006 .

[22]  Alain Barbu,et al.  Multiscale modelling of defect kinetics in irradiated iron , 2004 .

[23]  Lorenzo Malerba,et al.  Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach , 2004 .

[24]  Toby S. Hudson,et al.  Confinement of interstitial cluster diffusion by oversized solute atoms , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  H. Mori,et al.  Effects of chromium on the one-dimensional motion of interstitial-type dislocation loops in iron , 2004 .

[26]  Seungwu Han,et al.  Development of an interatomic potential for phosphorus impurities in α-iron , 2004, cond-mat/0406356.

[27]  J. Foct,et al.  Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe , 2004 .

[28]  T. Byun,et al.  Plastic instability in polycrystalline metals after low temperature irradiation , 2004 .

[29]  E. Simonen,et al.  Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 C , 2003 .

[30]  Stanislav I Golubov,et al.  One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper , 2003 .

[31]  S. Zinkle,et al.  Dose dependence of defect accumulation in neutron irradiated copper and iron , 2002 .

[32]  H. Matsui,et al.  In situ observation of glide motions of SIA-type loops in vanadium and V–5Ti under HVEM irradiation , 2002 .

[33]  S. Zinkle,et al.  On grain-size-dependent void swelling in pure copper irradiated with fission neutrons , 2002 .

[34]  A. Barbu,et al.  Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations , 2002 .

[35]  J. M. Perlado,et al.  Dynamics of self-interstitial cluster migration in pure α-Fe and Fe-Cu alloys , 2002 .

[36]  B. N. Singh,et al.  On recoil-energy-dependent defect accumulation in pure copper Part II. Theoretical treatment , 2001 .

[37]  N. Soneda,et al.  Migration kinetics of the self-interstitial atom and its clusters in bcc Fe , 2001 .

[38]  S. Zinkle,et al.  On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials , 2000 .

[39]  Akira Kohyama,et al.  Simulating the influence of radiation temperature variations on microstructural evolution , 2000 .

[40]  P. Ehrhart,et al.  On recoil energy dependent void swelling in pure copper Part I. Experimental results , 2000 .

[41]  A. Horsewell,et al.  Effects of neutron irradiation on microstructure and mechanical properties of pure iron , 1999 .

[42]  N. Soneda,et al.  Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation , 1998 .

[43]  A. Serra,et al.  Aspects of microstructure evolution under cascade damage conditions , 1997 .

[44]  A. Kohyama,et al.  Rate theory modeling of defect evolution under cascade damage conditions: the influence of vacancy-type cascade remnants on defect evolution , 1996 .

[45]  J. Evans,et al.  Significant differences in defect accumulation behaviour between fcc and bcc crystals under cascade damage conditions , 1995 .

[46]  S. Iwata,et al.  Interstitial cluster formation in metals under intense irradiation , 1995 .

[47]  L. Mansur Theory and experimental background on dimensional changes in irradiated alloys , 1994 .

[48]  T. Yoshiie,et al.  Factors to influence the nucleation and growth of interstitial clusters during cascade damage , 1994 .

[49]  G. E. Lucas,et al.  The evolution of mechanical property change in irradiated austenitic stainless steels , 1993 .

[50]  H. Trinkaus,et al.  Glide of interstitial loops produced under cascade damage conditions: Possible effects on void formation , 1992 .

[51]  A. Foreman,et al.  Production bias and void swelling in the transient regime under cascade damage conditions , 1992 .

[52]  C. Woo,et al.  Production bias due to clustering of point defects in irradiation-induced cascades , 1992 .

[53]  C. Woo,et al.  The Concept of Production Bias and Its Possible Role in Defect Accumulation under Cascade Damage Conditions , 1990 .

[54]  O. Dimitrov,et al.  Influence of nickel concentration on point defect migration in high-nickel Fe-Cr-Ni alloys , 1988 .

[55]  H. Yoshida,et al.  Positron annihilation lifetime measurement of irradiated stainless steels , 1985 .

[56]  O. Dimitrov,et al.  Composition dependence of defect properties in electron-irradiated Fe-Cr-Ni solid solutions , 1984 .

[57]  N. M. Ghoniem,et al.  The Simultaneous Clustering of Point Defects during Irradiation , 1979 .

[58]  R. Fleischer Rapid Solution Hardening, Dislocation Mobility, and the Flow Stress of Crystals , 1962 .

[59]  A. S. Abyzov,et al.  Numerical evaluation of the dislocation loop bias , 2005 .

[60]  Mihai-Cosmin Marinica,et al.  Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations , 2005 .

[61]  Stanislav I Golubov,et al.  Stability and mobility of defect clusters and dislocation loops in metals , 2000 .

[62]  D. Maroudas,et al.  Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron , 2000 .

[63]  J. M. Perlado,et al.  Comparative study of radiation damage accumulation in Cu and Fe , 2000 .

[64]  N. Baluc,et al.  The microstructure and associated tensile properties of irradiated fcc and bcc metals , 2000 .

[65]  Stanislav I Golubov,et al.  Defect accumulation in fcc and bcc metals and alloys under cascade damage conditions – Towards a generalisation of the production bias model , 2000 .

[66]  K. Krishan,et al.  Effect of Ti addition on swelling in 316 stainless steel under HVEM conditions , 1987 .

[67]  O. Dimitrov,et al.  Defect recovery in irradiated high-purity austenitic Fe-Cr-Ni alloys: Activation energies and dependence on initial defect concentration , 1982 .

[68]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .