The treatment of conformationally flexible molecules in similarity and complementarity searching

The properties of a molecule are intimately linked to the 3D structures, or conformations that it can adopt. Consideration of the conformational properties of a molecule is therefore essential in any approach to rational drug design. Conformational analysis is the study of the conformations of a molecule and the relationships between them. This chapter considers the importance of conformational flexibility in similarity and complementarity searching and describes some of the approaches that have been used to tackle these problems. First, however, we must establish some of the fundamental concepts involved.

[1]  Tim Clark,et al.  A Handbook of Computational Chemistry: A Practical Guide to Chemical Structure and Energy Calculations , 1985 .

[2]  Garland R. Marshall,et al.  Constrained search of conformational hyperspace , 1989, J. Comput. Aided Mol. Des..

[3]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[4]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[5]  Andrew R. Leach,et al.  Automated conformational analysis: Directed conformational search using the A* algorithm , 1990 .

[6]  A. Leach A Survey of Methods for Searching the Conformational Space of Small and Medium‐Sized Molecules , 1992 .

[7]  Michael Pfeifer,et al.  St. Louis, Missouri , 1983 .

[8]  Stephen R. Wilson,et al.  Conformational Analysis of Flexible Molecules: Location of the Global Minimum Energy Conformation by the Simulated Annealing Method , 1988 .

[9]  Ioan Motoc,et al.  Three-Dimensional Quantitative Structure-Activity Relationships I. General Approach to the Pharmacophore Model Validation† , 1986 .

[10]  P Willett,et al.  Pharmacophoric pattern matching in files of three-dimensional chemical structures: implementation of flexible searching. , 1993, Journal of molecular graphics.

[11]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures , 1987, Biopolymers.

[12]  M. Hartmann Molecular mechanics. Von ULRICH BURKERT und NORMAN L. ALLINGER. ACS Monograph 177. Washington: American Chemical Society 1982. 430 S., US $ 77.95 , 1984 .

[13]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[14]  S. Wilson,et al.  Applications of simulated annealing to peptides , 1990, Biopolymers.

[15]  R. Sheridan,et al.  The ensemble approach to distance geometry: application to the nicotinic pharmacophore. , 1986, Journal of medicinal chemistry.

[16]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[17]  R Langridge,et al.  Real-time color graphics in studies of molecular interactions. , 1981, Science.

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  G. M. Crippen,et al.  Distance geometry and conformational calculations , 1981 .

[20]  E. Keith Davies,et al.  Conformational Freedom in 3-D Databases , 1993 .

[21]  J. Scott Dixon Flexible docking of ligands to receptor sites using genetic algorithms , 1993 .

[22]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[23]  Richard S. Judson,et al.  Conformational searching methods for small molecules. II. Genetic algorithm approach , 1993, J. Comput. Chem..

[24]  P. Dean,et al.  Molecular recognition: 3d surface structure comparison by gnomonic , 1987 .

[25]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[26]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[27]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[28]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[29]  Philip M. Dean,et al.  An exploration of a novel strategy for superposing several flexible molecules , 1993, J. Comput. Aided Mol. Des..

[30]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformations II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations , 1986, Proteins.

[31]  J. Ponder,et al.  Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. , 1987, Journal of molecular biology.

[32]  D. K. Friesen,et al.  A combinatorial algorithm for calculating ligand binding , 1984 .

[33]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[34]  W. C. Still,et al.  The multiple minimum problem in molecular modeling. Tree searching internal coordinate conformational space , 1988 .

[35]  Keith Prout,et al.  The application of Artificial Intelligence to the conformational analysis of strained molecules , 1990 .

[36]  Norman L. Allinger,et al.  Conformational analysis—CI , 1974 .

[37]  N. W. Murrall,et al.  Conformational freedom in 3-D databases. 1. Techniques , 1990, J. Chem. Inf. Comput. Sci..

[38]  S. Kearsley An algorithm for the simultaneous superposition of a structural series , 1990 .

[39]  I. Kuntz,et al.  Docking flexible ligands to macromolecular receptors by molecular shape. , 1986, Journal of medicinal chemistry.

[40]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[41]  Gordon M. Crippen,et al.  Note rapid calculation of coordinates from distance matrices , 1978 .

[42]  D. Ferguson,et al.  A new approach to probing conformational space with molecular mechanics: Random incremental pulse search , 1989 .

[43]  Simon K. Kearsley,et al.  An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap , 1990 .

[44]  A. Leach,et al.  Ligand docking to proteins with discrete side-chain flexibility. , 1994, Journal of molecular biology.

[45]  Andrew R. Leach,et al.  WIZARD: AI in conformational analysis , 1987, J. Comput. Aided Mol. Des..

[46]  A E Howard,et al.  An analysis of current methodologies for conformational searching of complex molecules. , 1988, Journal of medicinal chemistry.

[47]  Johan Desmet,et al.  The dead-end elimination theorem and its use in protein side-chain positioning , 1992, Nature.

[48]  Dorica Mayer,et al.  A unique geometry of the active site of angiotensin-converting enzyme consistent with structure-activity studies , 1987, J. Comput. Aided Mol. Des..

[49]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[50]  Andrew Smellie,et al.  Fast drug-receptor mapping by site-directed distances: a novel method of predicting new pharmacological leads , 1991, J. Chem. Inf. Comput. Sci..

[51]  A. Ghose,et al.  Geometrically feasible binding modes of a flexible ligand molecule at the receptor site , 1985 .

[52]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[53]  I. Kuntz Structure-Based Strategies for Drug Design and Discovery , 1992, Science.

[54]  T. Ackermann C. L. Brooks III, M. Karplus, B. M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics, Volume LXXI, in: Advances in Chemical Physics, John Wiley & Sons, New York 1988. 259 Seiten, Preis: US $ 65.25 , 1990 .

[55]  R C Glen,et al.  Molecular recognition using a binary genetic search algorithm. , 1993, Journal of molecular graphics.

[56]  P. M. Dean,et al.  Molecular recognition: identification of local minima for matching in rotational 3-space by cluster analysis , 1987 .

[57]  Thomas E. Moock,et al.  Conformational searching in ISIS/3D databases , 1994, J. Chem. Inf. Comput. Sci..

[58]  I. Kuntz,et al.  Conformational analysis of flexible ligands in macromolecular receptor sites , 1992 .

[59]  M. Saunders Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum , 1987 .

[60]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[61]  P.-L. Chau,et al.  Molecular recognition: blind-searching for regions of strong structural match on the surfaces of two dissimilar molecules , 1988 .

[62]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[63]  M. Karplus,et al.  Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. , 1987, Science.

[64]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[65]  Y. Martin,et al.  3D database searching in drug design. , 1992, Journal of medicinal chemistry.

[66]  P. Dean,et al.  Molecular recognition: optimized searching through rotational 3-space for pattern matches on molecular surfaces , 1987 .

[67]  Martin Saunders,et al.  Stochastic search for the conformations of bicyclic hydrocarbons , 1989 .

[68]  P Willett,et al.  Pharmacophoric pattern matching in files of three-dimensional chemical structures: use of bounded distance matrices for the representation and searching of conformationally flexible molecules. , 1992, Journal of molecular graphics.

[69]  Andrew R. Leach An Algorithm To Directly Identify a Molecule's "Most Different" Conformations , 1994, J. Chem. Inf. Comput. Sci..

[70]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[71]  Randy J. Read,et al.  A multiple‐start Monte Carlo docking method , 1992 .

[72]  W. Graham Richards,et al.  Molecular similarity: The introduction of flexible fitting , 1990, J. Comput. Aided Mol. Des..

[73]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[74]  Andrew C. Good,et al.  Utilization of Gaussian functions for the rapid evaluation of molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[75]  Catherine Burt,et al.  The application of molecular similarity calculations , 1990 .

[76]  Richard S. Judson,et al.  Analysis of the genetic algorithm method of molecular conformation determination , 1993, J. Comput. Chem..