On the Convergence of the Self-Consistent Field Iteration in Kohn-Sham Density Functional Theory
暂无分享,去创建一个
Ya-Xiang Yuan | Xiao Wang | Xin Liu | Zaiwen Wen | Ya-Xiang Yuan | Z. Wen | Xiao Wang | Xin Liu | Ya-xiang Yuan
[1] J. Koutecký,et al. On Convergence Difficulties in the Iterative Hartree—Fock Procedure , 1971 .
[2] G. Stewart. Error Bounds for Approximate Invariant Subspaces of Closed Linear Operators , 1971 .
[3] G. Kerker. Efficient iteration scheme for self-consistent pseudopotential calculations , 1981 .
[4] A. Szabó,et al. Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .
[5] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[6] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[7] C. Bris,et al. Can we outperform the DIIS approach for electronic structure calculations , 2000 .
[8] E. Cancès,et al. On the convergence of SCF algorithms for the Hartree-Fock equations , 2000 .
[9] E. Cancès,et al. Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers , 2001 .
[10] G. Scuseria,et al. A black-box self-consistent field convergence algorithm: One step closer , 2002 .
[11] E. Cancès,et al. Computational quantum chemistry: A primer , 2003 .
[12] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[13] Claude Le Bris,et al. Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.
[14] Juan C. Meza,et al. A Trust Region Direct Constrained Minimization Algorithm for the Kohn-Sham Equation , 2007, SIAM J. Sci. Comput..
[15] Juan C. Meza,et al. On the Convergence of the Self-Consistent Field Iteration for a Class of Nonlinear Eigenvalue Problems , 2008, SIAM J. Matrix Anal. Appl..
[16] R. Schneider,et al. DIRECT MINIMIZATION FOR CALCULATING INVARIANT SUBSPACES IN DENSITY FUNCTIONAL COMPUTATIONS OF THE ELECTRONIC STRUCTURE , 2008, 0805.1190.
[17] E. Cancès,et al. Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations. , 2008, The Journal of chemical physics.
[18] Chao Yang,et al. Solving a Class of Nonlinear Eigenvalue Problems by Newton's Method , 2009 .
[19] Juan C. Meza,et al. KSSOLV—a MATLAB toolbox for solving the Kohn-Sham equations , 2009, TOMS.
[20] A. Levitt. Convergence of gradient-based algorithms for the Hartree-Fock equations∗ , 2011, 1109.5473.
[21] Michael Ulbrich,et al. Adaptive Regularized Self-Consistent Field Iteration with Exact Hessian for Electronic Structure Calculation , 2013, SIAM J. Sci. Comput..
[22] Eric Canccs. Scf Algorithms for Hartree-fock Electronic Calculations , 2022 .