Photo-driven nano-impellers and nanovalves for on-command drug release

Three types of photo-responsive nano-architectures -nano-gatekeepers, nanovalves and nanoimpellers- were synthesized based on azobenzene derivatives tethered in and on mesporous silica nanoparticles. The light responsive nature of these materials enables them to be externally controlled such that transport of the cargo molecules from mesopores can be regulated. In particular, nanoimpellers have shown to successfully release anti-cancer drug, camptothecin, upon photoactivation and ultimately led to cell apoptosis.

[1]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[2]  K. Horie,et al.  Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film , 1989 .

[3]  Tahei Tahara,et al.  Picosecond Time-Resolved Raman Study of trans-Azobenzene , 2000 .

[4]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[5]  Yingchun Zhu,et al.  Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. , 2007, Angewandte Chemie.

[6]  H. Rau,et al.  On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion , 2002 .

[7]  Plamen Atanassov,et al.  Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane , 2004 .

[8]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[9]  James M Tour,et al.  Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. , 2008, Nano letters.

[10]  K. Ichimura,et al.  Comparative Studies on Isomerization Behavior and Photocontrol of Nematic Liquid Crystals Using Polymethacrylates with 3,3‘- and 4,4‘-Dihexyloxyazobenzenes in Side Chains , 1999 .

[11]  S. Monti,et al.  cis .dblharw. trans Photoisomerization of azobenzene-cyclodextrin inclusion complexes , 1987 .

[12]  Takeshi Ishikawa,et al.  Theoretical study on the photoisomerization of azobenzene , 2001 .

[13]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[14]  Fritz Vögtle,et al.  Photoisomerization of azobenzene derivatives in nanostructured silica. , 2006, The journal of physical chemistry. B.

[15]  J. F. Stoddart,et al.  Dynamic chirality in donor-acceptor pretzelanes. , 2005, The Journal of organic chemistry.

[16]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Brinker,et al.  Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality , 2000 .

[18]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[19]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[20]  J. Caro,et al.  Change of gas permeation by photoinduced switching of zeolite-azobenzene membranes of type MFI and FAU , 2002 .

[21]  Xingguo Liang,et al.  A DNA Nanomachine Powered by Light Irradiation , 2008, Chembiochem : a European journal of chemical biology.

[22]  W. Tan,et al.  Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe , 2009, Proceedings of the National Academy of Sciences.

[23]  D. Whitten,et al.  Solvent-induced mechanism change in charge-transfer molecules. Inversion versus rotation paths for the Z .fwdarw. E isomerization of donor-acceptor substituted azobenzenes , 1988 .

[24]  J. F. Stoddart,et al.  Controlled-access hollow mechanized silica nanocontainers. , 2009, Journal of the American Chemical Society.

[25]  D. Whitten,et al.  Solvent and substituent on the thermal isomerization of substituted azobenzenes. Flash spectroscopic study , 1971 .

[26]  M. Asakawa,et al.  Threading-followed-by-shrinking protocol for the synthesis of a [2]rotaxane incorporating a Pd(II)-salophen moiety. , 2004, Journal of the American Chemical Society.

[27]  Seong Huh,et al.  Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method , 2003 .

[28]  David J. Williams,et al.  High yielding template-directed syntheses of [2]rotaxanes , 1998 .

[29]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[30]  Chih-Wei Chang,et al.  Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study. , 2004, Journal of the American Chemical Society.

[31]  T. Ohsuna,et al.  An ordered mesoporous organosilica hybrid material with a crystal-like wall structure , 2002, Nature.

[32]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[33]  S. Shinkai,et al.  Temperature and Pressure Dependences of Thermal Cis-to-Trans Isomerization of Azobenzenes Which Evidence an Inversion Mechanism , 1981 .