Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation

Nous etudions la propagation de paquets d'ondes moleculaires au travers des deux types les plus simples de croisements evites de niveaux d'energie electroniques, dans la limite ou le gap entre ces valeurs propres decroit lorsque les masses nucleaires augmentent. Pour ces types de croisements evites, les niveaux d'energie electroniques ne dependent essentiellement que d'un seul des parametres de configuration nucleaire , comme c'est le cas pour toute molecule diatomique. Nous observons que les probabilites de transition sont d'ordre un et sont determines par la formule de Landau-Zener.

[1]  C. Pfister,et al.  Full asymptotic expansion of transition probabilities in the adiabatic limit , 1991 .

[2]  G. Hagedorn Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps , 1991 .

[3]  M. Klein,et al.  On the Born-Oppenheimer approximation of wave operators in molecular scattering theory , 1993 .

[4]  G. Hagedorn Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension , 1985 .

[5]  Huzihiro Araki,et al.  International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[6]  Mileti,et al.  Interferences in adiabatic transition probabilities mediated by Stokes lines. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[7]  C. Pfister,et al.  Superadiabatic evolution and adiabatic transition probability between two nondegenerate levels isolated in the spectrum , 1993 .

[8]  André Martinez Développements asymptotiques dans l'approximation de Born-Oppenheimer@@@Asymptotic expansions in the Born-Oppenheimer approximation , 1988 .

[9]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[10]  李幼升,et al.  Ph , 1989 .

[11]  Alain Joye,et al.  Non-trivial prefactors in adiabatic transition probabilities induced by high-order complex degeneracies , 1993 .

[12]  A. Martínez Développements asymptotiques et effet tunnel dans l'approximation de Born-Oppenheimer , 1989 .

[13]  C. Pfister,et al.  Absence of geometrical correction to the Landau-Zener formula , 1992 .

[14]  M. Klein On the mathematical theory of predissociation , 1987 .

[15]  George A. Hagedorn,et al.  Electron energy level crossings in the time-dependent Born-Oppenheimer approximation , 1990 .

[16]  G. Hagedorn High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems , 1988 .

[17]  Alain Joye,et al.  Exponential decay and geometric aspect of transition probabilities in the adiabatic limit , 1991 .

[18]  G. Hagedorn Classification and normal forms for avoided crossings of quantum-mechanical energy levels , 1998 .

[19]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[20]  A. Joye Exponential asymptotics in a singular limit for n -level scattering systems , 1995, quant-ph/9508013.

[21]  G. Hagedorn High order corrections to the time-dependent Born-Oppenheimer approximation. II: Coulomb systems , 1988 .

[22]  A. Kargol The infinite time limit for the time-dependent Born-Oppenheimer approximation , 1994 .

[23]  Alexander Elgart,et al.  The Adiabatic Theorem of Quantum Mechanics , 1998 .

[24]  C. Pfister,et al.  Quantum adiabatic evolution , 1994 .

[25]  G. Nenciu,et al.  Semi-Classical Inelastic S-Matrix for One-Dimensional N-States Systems , 1995 .

[26]  A. Joye Proof of the Landau–Zener formula , 1994 .

[27]  Vimal Singh,et al.  Perturbation methods , 1991 .

[28]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[29]  P. Pettersson WKB expansions for systems of Schrödinger operators with crossing eigenvalues , 1997 .

[30]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[31]  André Martinez Resonances dans l'approximation de Born-Oppenheimer II-largeur des resonances , 1991 .

[32]  J. S. Howland,et al.  THE BORN OPPENHEIMER APPROXIMATION: STRAIGHT-UP AND WITH A TWIST , 1997 .

[33]  C. Pfister,et al.  Semiclassical asymptotics beyond all orders for simple scattering systems , 1995 .

[34]  George A. Hagedorn,et al.  MOLECULAR PROPAGATION THROUGH SMALL AVOIDED CROSSINGS OF ELECTRON ENERGY LEVELS , 1999 .

[35]  Ruedi Seiler,et al.  On the Born-Oppenheimer expansion for polyatomic molecules , 1992 .

[36]  George A. Hagedorn,et al.  Molecular propagation through electron energy level crossings , 1994 .

[37]  Pfister,et al.  Non-Abelian geometric effect in quantum adiabatic transitions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[38]  George A. Hagedorn,et al.  "High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials" , 1986 .