Ammonia-induced surface microstructure reconstruction on ACIGS thin film at room temperature

[1]  Wei Liu,et al.  Enhancing Surface Properties for Electrodeposited Cu(In,Ga)Se2 Films by (NH4)2S Solution at Room Temperature , 2021 .

[2]  Yun Sun,et al.  Effects of different Cs distribution in the film on the performance of CIGS thin film solar cells , 2021 .

[3]  M. Thuvander,et al.  Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells—Insight from Theory and Experiment , 2021, ACS applied materials & interfaces.

[4]  Vinaya Kumar Arepalli,et al.  Growth and device properties of ALD deposited ZnO films for CIGS solar cells , 2021 .

[5]  Yun Sun,et al.  Boosting Cu(In,Ga)Se2 Thin Film Growth in Low-Temperature Rapid-Deposition Processes: An Improved Design for the Single-Heating Knudsen Effusion Cell , 2020 .

[6]  Yun Sun,et al.  Silver Surface Treatment of Cu(In,Ga)Se 2 (CIGS) Thin Film: A New Passivation Process for the CdS/CIGS Heterojunction Interface , 2020 .

[7]  Le Chang,et al.  Effect of Ag doping on the performance of Cu2SnS3 thin-film solar cells , 2020, Solar Energy.

[8]  A. Janotti,et al.  Assessing the roles of Cu- and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations , 2020 .

[9]  E. Handick,et al.  Heavy Alkali Treatment of Cu(In,Ga)Se2 Solar Cells: Surface versus Bulk Effects , 2020, Advanced Energy Materials.

[10]  Zhengcao Li,et al.  Correlation between carrier recombination and valence band offset effect of graded Cu(In,Ga)Se2 solar cells , 2019, Solar Energy Materials and Solar Cells.

[11]  Motoshi Nakamura,et al.  Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35% , 2019, IEEE Journal of Photovoltaics.

[12]  Yun Sun,et al.  Optimizing the thickness of sputtering-Zn(O, S) buffer layer for all-dry Cd-free CIGS solar cells , 2019, Materials Research Express.

[13]  S. Nishiwaki,et al.  Advanced Alkali Treatments for High‐Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates , 2019, Advanced Energy Materials.

[14]  H. Hsu,et al.  Improving Ga distribution and efficiency of flexible Cu(In,Ga)(S,Se) solar cell using CuGa:Na target route , 2019, Materials Science in Semiconductor Processing.

[15]  Takuya Kato,et al.  Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2 , 2019, IEEE Journal of Photovoltaics.

[16]  Xiaomin Wang,et al.  Effects of Ammonia-Induced Surface Modification of Cu(In,Ga)Se2 on High-Efficiency Zn(O,S)-Based Cu(In,Ga)Se2 Solar Cells , 2019, Solar RRL.

[17]  M. Powalla,et al.  Thin‐film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials , 2018, Applied Physics Reviews.

[18]  Chin-Jung Chao,et al.  CIGS thin film and device performance produced through a variation Ga concentration during three-stage growth process , 2018, Materials Science in Semiconductor Processing.

[19]  A. Pérez‐Rodríguez,et al.  Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up , 2018, Nature Energy.

[20]  Rujun Sun,et al.  Ga 2 Se 3 treatment of Cu-rich CIGS thin films to fabricate Cu-poor CIGS thin films with large grains and U-shaped Ga distribution , 2018, Vacuum.

[21]  Yun Sun,et al.  The influence of thermal cracking selenium source temperature on CIGS absorber and device performance in co-evaporation processes , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[22]  H. Lee,et al.  Ag incorporation in low-temperature grown Cu(In,Ga)Se2 solar cells using Ag precursor layers , 2016 .

[23]  G. H. Bauer,et al.  Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells , 2015 .

[24]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[25]  Kihwan Kim,et al.  Effect of Reduced Cu(InGa)(SeS) $_{\bm 2}$ Thickness Using Three-Step H $_{\bm 2}$ Se/Ar/H $_{\bm 2}$ S Reaction of Cu–In–Ga Metal Precursor , 2013 .

[26]  Chih-Wen Liu,et al.  Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3 , 2012 .

[27]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[28]  Susanne Siebentritt,et al.  What limits the efficiency of chalcopyrite solar cells , 2011 .

[29]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .