Production of crosslinked, hollow nanoparticles by surface‐initiated living free‐radical polymerization

Surface-initiated living free-radical polymerization is employed in a multistep procedure to prepare hollow polymeric nanocapsules. Initially, trichlorosilyl-substituted alkoxyamine initiating groups are attached to the surface silanol groups of silica nanoparticles. This surface layer of initiating groups is then used to grow functionalized linear chains leading to a core–shell morphology. The choice of functional groups is governed by their ability to undergo facile crosslinking reactions, with both active ester and benzocyclobutene groups being examined. Under either chemical or thermal conditions, the reaction of these functionalities gives a crosslinked polymeric shell that is covalently attached to, and surrounds, the central silica core. Removal of the silica core with HF then gives the hollow polymeric nanocapsules, which are stable under solvent dissolution and thermal treatment because of their crosslinked structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1309–1320, 2002

[1]  B. Chu,et al.  Use of block copolymer micelles on formation of hollow MoO3 nanospheres , 2000 .

[2]  S. Armes,et al.  The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. , 2001, Journal of the American Chemical Society.

[3]  Ian D. Rees,et al.  End‐group fidelity in nitroxide‐mediated living free‐radical polymerizations , 2000 .

[4]  V. Rotello,et al.  Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers , 2000 .

[5]  K. Wooley,et al.  REDOR determination of the composition of shell cross-linked amphiphilic core-shell nanoparticles and the partitioning of sequestered fluorinated guests , 2001 .

[6]  A. Fane,et al.  Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization , 2001 .

[7]  J. Frommer,et al.  Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes , 2000 .

[8]  T. Endo,et al.  Synthesis of a poly(vinyl ether) containing a benzocyclobutene moiety and its reaction with dienophiles , 1999 .

[9]  C. Pan,et al.  Synthesis and characterization of star polymers initiated by hexafunctional discotic initiator through atom transfer radical polymerization , 2001 .

[10]  T. Kowalewski,et al.  Packaging of DNA by shell crosslinked nanoparticles. , 1999, Nucleic acids research.

[11]  Krzysztof Matyjaszewski,et al.  Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes , 1995 .

[12]  D Gan,et al.  Tunable swelling kinetics in core--shell hydrogel nanoparticles. , 2001, Journal of the American Chemical Society.

[13]  Didier Benoit,et al.  Development of a Universal Alkoxyamine for “Living” Free Radical Polymerizations , 1999 .

[14]  M. Skrifvars,et al.  Hollow‐particle latexes: Preparation and properties , 2001 .

[15]  K. Wooley,et al.  Nanostructured materials designed for cell binding and transduction. , 2001, Biomacromolecules.

[16]  F. Caruso,et al.  Cross-Linked, Luminescent Spherical Colloidal and Hollow-Shell Particles , 2001 .

[17]  M. Sawamoto,et al.  Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization , 1995 .

[18]  T. Endo,et al.  Polymerization of o-quinodimethanes. IV. Radical polymerization of 1-cyano-o-quinodimethane in the presence of TEMPO , 2000 .

[19]  K. Wooley,et al.  Amphiphilic core–shell nanospheres obtained by intramicellar shell crosslinking of polymer micelles with poly(ethylene oxide) linkers , 1998 .

[20]  T. Patten,et al.  Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces. , 2001, Journal of the American Chemical Society.

[21]  Willi Volksen,et al.  Templating Nanoporosity in Thin‐Film Dielectric Insulators , 1998 .

[22]  E. Giannelis,et al.  Direct Synthesis of Dispersed Nanocomposites by in Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator , 1999 .

[23]  Shiping Zhu,et al.  Supported atom transfer radical polymerization of methyl methacrylate mediated by CuBr–tetraethyldiethylenetriamine grafted onto silica gel , 2001 .

[24]  K. Wooley,et al.  The preparation of t‐butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials , 2000 .

[25]  O. Terasaki,et al.  Polystyrene bead-assisted self-assembly of microstructured silica hollow spheres in highly alkaline media. , 2001, Journal of the American Chemical Society.

[26]  M. Manuszak,et al.  Atom transfer radical polymerization of n‐butyl acrylate from silica nanoparticles , 2001 .

[27]  K. Wooley,et al.  Fundamental design aspects of amphiphilic shell-crosslinked nanoparticles for controlled release applications , 2001 .

[28]  D. Bergbreiter,et al.  Self-Assembled, Sub-Micrometer Diameter Semipermeable Capsules. , 1999, Angewandte Chemie.

[29]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[30]  Jennifer J. Jackiw,et al.  Ring-Opening Metathesis Polymerization from Surfaces , 1999 .

[31]  W. Ford,et al.  Facile Conversion of Colloidal Crystals to Ordered Porous Polymer Nets , 2000 .

[32]  D. Yan,et al.  Atom transfer radical polymerization of styrene and methyl methacrylate catalyzed by FeCl2/iminodiacetic acid , 2000 .

[33]  M. Becker,et al.  Diblock copolymers, micelles, and shell‐crosslinked nanoparticles containing poly(4‐fluorostyrene): Tools for detailed analyses of nanostructured materials , 2001 .

[34]  C. Hawker,et al.  Use of Stable Free Radicals for the Sequential Preparation and Surface Grafting of Functionalized Macroporous Monoliths , 2000 .

[35]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[36]  Steven P. Armes,et al.  Synthesis of Well-Defined, Polymer-Grafted Silica Particles by Aqueous ATRP , 2001 .

[37]  S. Jenekhe,et al.  Self-assembly of ordered microporous materials from rod-coil block copolymers , 1999, Science.

[38]  Vicki L. Colvin,et al.  Porous Metals from Colloidal Templates , 2000 .

[39]  T. Kowalewski,et al.  Two-dimensional, shell-cross-linked nanoparticle arrays. , 2001, Journal of the American Chemical Society.

[40]  Zhiqun Lin,et al.  One-Step Formation of Functionalized Block Copolymers , 2000 .

[41]  T. Kowalewski,et al.  Water-Soluble Knedel-like Structures: The Preparation of Shell-Cross-Linked Small Particles , 1996 .

[42]  R. B. Grubbs,et al.  Designing functional aromatic multisulfonyl chloride initiators for complex organic synthesis by living radical polymerization , 2000 .

[43]  Graeme Moad,et al.  Living Radical Polymerization with Reversible Addition−Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents , 1999 .

[44]  T. Fukuda,et al.  Controlled grafting of a well-defined glycopolymer on a solid surface by surface-initiated atom transfer radical polymerization , 2000 .

[45]  W. Schärtl Crosslinked Spherical Nanoparticles with Core–Shell Topology , 2000 .

[46]  Krzysztof Matyjaszewski,et al.  Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization , 2001 .

[47]  T. Kowalewski,et al.  Environmentally-Responsive, Entirely Hydrophilic, Shell Cross-linked (SCK) Nanoparticles , 2001 .

[48]  A. Müller,et al.  Surface-Grafted Hyperbranched Polymers via Self-Condensing Atom Transfer Radical Polymerization from Silicon Surfaces , 2001 .

[49]  Younan Xia,et al.  Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces , 2001 .

[50]  T. Kowalewski,et al.  Nanocages Derived from Shell Cross-Linked Micelle Templates , 1999 .

[51]  M. Sawamoto,et al.  Quenching of metal-catalyzed living radical polymerization with silyl enol ethers , 2000 .

[52]  B. Ratna,et al.  Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals , 2001 .

[53]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[54]  Gary A. Deeter,et al.  Reactivity of Disubstituted Benzocyclobutenes. Model Compounds of Cross-Linkable High-Performance Polymers , 1994 .

[55]  M. Yessine,et al.  From well‐defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies , 2001 .

[56]  T. Patten,et al.  Preparation of Structurally Well-Defined Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations , 1999 .

[57]  K. Matyjaszewski,et al.  Simple and effective one-pot synthesis of (meth)acrylic block copolymers through atom transfer radical polymerization , 2000 .

[58]  Oswald Prucker,et al.  Microstructuring of Molecularly Thin Polymer Layers by Photolithography , 1998 .

[59]  S. Pispas,et al.  Multifunctional ATRP initiators : Synthesis of four-arm star homopolymers of methyl methacrylate and graft copolymers of polystyrene and poly(t-butyl methacrylate) , 2001 .

[60]  J. Fraser Stoddart,et al.  Constructing molecular machinery: A chemically-switchable [2]catenane [11] , 2000 .

[61]  Markus Antonietti,et al.  Preparation of polymeric nanocapsules by miniemulsion polymerization. , 2001 .

[62]  S. Ohnishi,et al.  Preparation of Nanometer-Sized Hollow Particles by Photochemical Degradation of Polysilane Shell Cross-Linked Micelles and Reversible Encapsulation of Guest Molecules1 , 2000 .

[63]  G. Baker,et al.  Controlled Synthesis of Cross-Linked Ultrathin Polymer Films by Using Surface-Initiated Atom Transfer Radical Polymerization. , 2001, Angewandte Chemie.

[64]  Harada,et al.  Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers , 1999, Science.

[65]  Didier Benoit,et al.  Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques , 1999 .

[66]  K. Matyjaszewski,et al.  Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces. , 2001, Journal of the American Chemical Society.

[67]  Karen L. Wooley,et al.  Shell Cross-Linked Knedels: A Synthetic Study of the Factors Affecting the Dimensions and Properties of Amphiphilic Core-Shell Nanospheres , 1997 .

[68]  W. Brittain,et al.  Synthesis of Tethered Polystyrene-block-Poly(methyl methacrylate) Monolayer on a Silicate Substrate by Sequential Carbocationic Polymerization and Atom Transfer Radical Polymerization , 1999 .

[69]  Craig J. Hawker,et al.  Molecular Weight Control by a "Living" Free-Radical Polymerization Process , 1994 .

[70]  Tomasz Kowalewski,et al.  Hydrogel-Coated Glassy Nanospheres: A Novel Method for the Synthesis of Shell Cross-Linked Knedels , 1997 .

[71]  G. Baker,et al.  Surface-initiated atom transfer radical polymerization on gold at ambient temperature , 2000 .

[72]  D. Haddleton,et al.  Modification of the ?-bromo end group of poly(methacrylate)s prepared by copper(I)-mediated living radical polymerization , 2000 .

[73]  D. Walt,et al.  Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates , 2000 .

[74]  Michael S. Wendland,et al.  SYNTHESIS OF CORED DENDRIMERS , 1999 .

[75]  M. Wirth,et al.  Surface Initiation of Living Radical Polymerization for Growth of Tethered Chains of Low Polydispersity , 1999 .