Factors affecting rocchio‐based pseudorelevance feedback in image retrieval

Pseudorelevance feedback (PRF) was proposed to solve the limitation of relevance feedback (RF), which is based on the user‐in‐the‐loop process. In PRF, the top‐k retrieved images are regarded as PRF. Although the PRF set contains noise, PRF has proven effective for automatically improving the overall retrieval result. To implement PRF, the Rocchio algorithm has been considered as a reasonable and well‐established baseline. However, the performance of Rocchio‐based PRF is subject to various representation choices (or factors). In this article, we examine these factors that affect the performance of Rocchio‐based PRF, including image‐feature representation, the number of top‐ranked images, the weighting parameters of Rocchio, and similarity measure. We offer practical insights on how to optimize the performance of Rocchio‐based PRF by choosing appropriate representation choices. Our extensive experiments on NUS‐WIDE‐LITE and Caltech 101 + Corel 5000 data sets show that the optimal feature representation is color moment + wavelet texture in terms of retrieval efficiency and effectiveness. Other representation choices are that using top‐20 ranked images as pseudopositive and pseudonegative feedback sets with the equal weight (i.e., 0.5) by the correlation and cosine distance functions can produce the optimal retrieval result.

[1]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[2]  Bruce G. Batchelor,et al.  Pattern Recognition: Ideas in Practice , 1978 .

[3]  James Allan,et al.  A cluster-based resampling method for pseudo-relevance feedback , 2008, SIGIR '08.

[4]  Djemel Ziou,et al.  Learning from negative example in relevance feedback for content-based image retrieval , 2002, Object recognition supported by user interaction for service robots.

[5]  Lei Zhang,et al.  A Unified Relevance Feedback Framework for Web Image Retrieval , 2009, IEEE Transactions on Image Processing.

[6]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[7]  Fei-Fei Li,et al.  What Does Classifying More Than 10, 000 Image Categories Tell Us? , 2010, ECCV.

[8]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[9]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Hermann Ney,et al.  Learning weighted distances for relevance feedback in image retrieval , 2008, 2008 19th International Conference on Pattern Recognition.

[11]  ChengXiang Zhai,et al.  A boosting approach to improving pseudo-relevance feedback , 2011, SIGIR.

[12]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[13]  Marius Tico,et al.  A Test Collection for the Evaluation of Content-Based Image Retrieval Algorithms—A User and Task-Based Approach , 2001, Information Retrieval.

[14]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Ivor W. Tsang,et al.  Improving Web Image Search by Bag-Based Reranking , 2011, IEEE Transactions on Image Processing.

[16]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[17]  Kevyn Collins-Thompson,et al.  A unified optimization framework for robust pseudo-relevance feedback algorithms , 2010, CIKM.

[18]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[19]  Thierry Pun,et al.  Strategies for positive and negative relevance feedback in image retrieval , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[20]  Alessandro Moschitti,et al.  A Study on Optimal Parameter Tuning for Rocchio Text Classifier , 2003, ECIR.

[21]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[22]  Kevyn Collins-Thompson,et al.  Estimation and use of uncertainty in pseudo-relevance feedback , 2007, SIGIR.

[23]  Edwin Diday,et al.  A Recent Advance in Data Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts , 1981 .

[24]  Fabio Roli,et al.  Instance-Based Relevance Feedback for Image Retrieval , 2004, NIPS.

[25]  Nicu Sebe,et al.  Texture Features for Content-Based Retrieval , 2001, Principles of Visual Information Retrieval.

[26]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[27]  Shaoping Ma,et al.  Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning , 2003, IEEE Trans. Image Process..

[28]  Syin Chan,et al.  Query Expansion by Raw Image Features and Text Annotations in Image Retrieval , 1998, ACCV.

[29]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Djemel Ziou,et al.  Image Retrieval from the World Wide Web: Issues, Techniques, and Systems , 2004, CSUR.

[31]  Edie M. Rasmussen,et al.  Users' relevance criteria in image retrieval in American history , 2002, Inf. Process. Manag..

[32]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Cornelis H. A. Koster,et al.  On the Importance of Parameter Tuning in Text Categorization , 2006, Ershov Memorial Conference.

[34]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[35]  Peng-Yeng Yin,et al.  Content-based image retrieval using association rule mining with soft relevance feedback , 2006, J. Vis. Commun. Image Represent..

[36]  Alessandra Lumini,et al.  Mixture of KL subspaces for relevance feedback , 2007, Multimedia Tools and Applications.

[37]  Ricardo da Silva Torres,et al.  Comparative study of global color and texture descriptors for web image retrieval , 2012, J. Vis. Commun. Image Represent..

[38]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[39]  Hongfei Lin,et al.  Finding a good query-related topic for boosting pseudo-relevance feedback , 2011, J. Assoc. Inf. Sci. Technol..

[40]  Thomas S. Huang,et al.  A novel relevance feedback technique in image retrieval , 1999, MULTIMEDIA '99.

[41]  Philip S. Yu,et al.  Efficient Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patterns , 2011, IEEE Transactions on Knowledge and Data Engineering.

[42]  Francesco G. B. De Natale,et al.  A Stochastic Approach to Image Retrieval Using Relevance Feedback and Particle Swarm Optimization , 2010, IEEE Transactions on Multimedia.

[43]  Thomas S. Huang,et al.  Relevance Feedback Techniques in Image Retrieval , 2001, Principles of Visual Information Retrieval.

[44]  Allan Hanbury,et al.  A survey of methods for image annotation , 2008, J. Vis. Lang. Comput..

[45]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[46]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[47]  Anil K. Jain,et al.  Image retrieval using color and shape , 1996, Pattern Recognit..

[48]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..