Hulls of cyclic and negacyclic codes over finite fields
暂无分享,去创建一个
Patanee Udomkavanich | San Ling | Somphong Jitman | Ekkasit Sangwisut | S. Ling | Ekkasit Sangwisut | Somphong Jitman | P. Udomkavanich
[1] James L. Massey. Reversible Codes , 1964, Inf. Control..
[2] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[3] Jeffrey S. Leon,et al. An Algorithm for Computing the Automorphism Group of a Hadamard Matrix , 1979, J. Comb. Theory, Ser. A.
[4] N. J. A. Sloane,et al. On ternary self-dual codes of length 24 , 1981, IEEE Trans. Inf. Theory.
[5] Jeffrey S. Leon,et al. Computing automorphism groups of error-correcting codes , 1982, IEEE Trans. Inf. Theory.
[6] Rudolf Lide,et al. Finite fields , 1983 .
[7] Jennifer D. Key,et al. Affine and projective planes , 1990, Discret. Math..
[8] J. S. Leon,et al. Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms , 1991, J. Symb. Comput..
[9] C. Chen,et al. Principles and Techniques in Combinatorics , 1992 .
[10] Xiang Yang,et al. The condition for a cyclic code to have a complementary dual , 1994, Discret. Math..
[11] Jeffrey S. Leon,et al. Partitions, refinements, and permutation group computation , 1995, Groups and Computation.
[12] N. Sendrier. Finding the permutation between equivalent binary codes , 1997, Proceedings of IEEE International Symposium on Information Theory.
[13] Nicolas Sendrier,et al. On the Dimension of the Hull , 1997, SIAM J. Discret. Math..
[14] Erez Petrank,et al. Is code equivalence easy to decide? , 1997, IEEE Trans. Inf. Theory.
[15] Radko Mesiar,et al. Partitions , 2019, The Student Mathematical Library.
[16] Nicolas Sendrier,et al. Finding the permutation between equivalent linear codes: The support splitting algorithm , 2000, IEEE Trans. Inf. Theory.
[17] N. Sendrier,et al. On the computation of the automorphism group of a linear code , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[18] Gintaras Skersys,et al. The Average Dimension of the Hull of Cyclic Codes , 2001, Discret. Appl. Math..
[19] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.
[20] Nicolas Sendrier,et al. Linear codes with complementary duals meet the Gilbert-Varshamov bound , 2004, ISIT.
[21] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[22] Zsuzsanna Lipták,et al. A Fast and Simple Algorithm for the Money Changing Problem , 2007, Algorithmica.
[23] M. Esmaeili,et al. On complementary-dual quasi-cyclic codes , 2009, Finite Fields Their Appl..
[24] H. Dinh. Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .
[25] Chaoping Xing,et al. On Self-Dual Cyclic Codes Over Finite Fields , 2011, IEEE Transactions on Information Theory.
[26] Wenchao Cai,et al. On self-dual constacyclic codes over finite fields , 2015, Des. Codes Cryptogr..