Hulls of cyclic and negacyclic codes over finite fields

[1]  James L. Massey Reversible Codes , 1964, Inf. Control..

[2]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[3]  Jeffrey S. Leon,et al.  An Algorithm for Computing the Automorphism Group of a Hadamard Matrix , 1979, J. Comb. Theory, Ser. A.

[4]  N. J. A. Sloane,et al.  On ternary self-dual codes of length 24 , 1981, IEEE Trans. Inf. Theory.

[5]  Jeffrey S. Leon,et al.  Computing automorphism groups of error-correcting codes , 1982, IEEE Trans. Inf. Theory.

[6]  Rudolf Lide,et al.  Finite fields , 1983 .

[7]  Jennifer D. Key,et al.  Affine and projective planes , 1990, Discret. Math..

[8]  J. S. Leon,et al.  Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms , 1991, J. Symb. Comput..

[9]  C. Chen,et al.  Principles and Techniques in Combinatorics , 1992 .

[10]  Xiang Yang,et al.  The condition for a cyclic code to have a complementary dual , 1994, Discret. Math..

[11]  Jeffrey S. Leon,et al.  Partitions, refinements, and permutation group computation , 1995, Groups and Computation.

[12]  N. Sendrier Finding the permutation between equivalent binary codes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[13]  Nicolas Sendrier,et al.  On the Dimension of the Hull , 1997, SIAM J. Discret. Math..

[14]  Erez Petrank,et al.  Is code equivalence easy to decide? , 1997, IEEE Trans. Inf. Theory.

[15]  Radko Mesiar,et al.  Partitions , 2019, The Student Mathematical Library.

[16]  Nicolas Sendrier,et al.  Finding the permutation between equivalent linear codes: The support splitting algorithm , 2000, IEEE Trans. Inf. Theory.

[17]  N. Sendrier,et al.  On the computation of the automorphism group of a linear code , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[18]  Gintaras Skersys,et al.  The Average Dimension of the Hull of Cyclic Codes , 2001, Discret. Appl. Math..

[19]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[20]  Nicolas Sendrier,et al.  Linear codes with complementary duals meet the Gilbert-Varshamov bound , 2004, ISIT.

[21]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[22]  Zsuzsanna Lipták,et al.  A Fast and Simple Algorithm for the Money Changing Problem , 2007, Algorithmica.

[23]  M. Esmaeili,et al.  On complementary-dual quasi-cyclic codes , 2009, Finite Fields Their Appl..

[24]  H. Dinh Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .

[25]  Chaoping Xing,et al.  On Self-Dual Cyclic Codes Over Finite Fields , 2011, IEEE Transactions on Information Theory.

[26]  Wenchao Cai,et al.  On self-dual constacyclic codes over finite fields , 2015, Des. Codes Cryptogr..