Angular analysis of two classes of non-polyhedral convex cones: the point of view of optimization theory

There are three related concepts that arise in connection with the angular analysis of a convex cone: antipodality, criticality, and Nash equilibria. These concepts are geometric in nature but they can also be approached from the perspective of optimization theory. A detailed angular analysis of polyhedral convex cones has been carried out in a recent work of ours. This note focus on two important classes of non-polyhedral convex cones: elliptic cones in an Euclidean vector space and spectral cones in a space of symmetric matrices.

[1]  Chandler Davis All convex invariant functions of hermitian matrices , 1957 .

[2]  Alfredo N. Iusem,et al.  Measuring the degree of pointedness of a closed convex cone: a metric approach , 2006 .

[3]  Pierre Maréchal,et al.  Convex $\operatorname{SO}(N)\times \operatorname{SO}(n)$-invariant functions and refinements of von Neumann’s inequality , 2007 .

[4]  Alfredo N. Iusem,et al.  Antipodal pairs, critical pairs, and Nash angular equilibria in convex cones , 2008, Optim. Methods Softw..

[5]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[6]  Alfredo N. Iusem,et al.  Searching for critical angles in a convex cone , 2009, Math. Program..

[7]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[8]  J Pe,et al.  Computing Approximate Solutions for Conic Systems of Constraints , 1998 .

[9]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[10]  Alfredo N. Iusem,et al.  On convex cones with infinitely many critical angles , 2007 .

[11]  Alfredo N. Iusem,et al.  On pairs of vectors achieving the maximal angle of a convex cone , 2005, Math. Program..

[12]  Peter Wriggers,et al.  A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law , 2004 .

[13]  James Renegar,et al.  Computing approximate solutions for convex conic systems of constraints , 2000, Math. Program..

[14]  Electromagnetic scattering from finite circular and elliptic cones , 1985 .

[15]  Convex SO ( N ) × SO ( n )-invariant Functions and Refinements of Von Neumann ’ s Inequality , 2005 .

[16]  Alberto Seeger Convex Analysis of Spectrally Defined Matrix Functions , 1997, SIAM J. Optim..

[17]  Alfredo N. Iusem,et al.  Antipodality in convex cones and distance to unpointedness , 2008, Appl. Math. Lett..

[18]  Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface , 2006 .