Stability and exfoliation of germanane: a germanium graphane analogue.

Graphene's success has shown not only that it is possible to create stable, single-atom-thick sheets from a crystalline solid but that these materials have fundamentally different properties than the parent material. We have synthesized for the first time, millimeter-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane (CH). The surface layer of GeH only slowly oxidizes in air over the span of 5 months, while the underlying layers are resilient to oxidation based on X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy measurements. The GeH is thermally stable up to 75 °C; however, above this temperature amorphization and dehydrogenation begin to occur. These sheets can be mechanically exfoliated as single and few layers onto SiO2/Si surfaces. This material represents a new class of covalently terminated graphane analogues and has great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility ca. five times higher than that of bulk Ge.

[1]  K. Kamaras,et al.  Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy , 2008, 0812.0690.

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[4]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[5]  T. Fässler Germanium(cF136): a new crystalline modification of germanium with the porous clathrate-II structure. , 2007, Angewandte Chemie.

[6]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[7]  Dahn,et al.  Structure of siloxene and layered polysilane (Si6H6). , 1993, Physical review. B, Condensed matter.

[8]  A. Farajian,et al.  Hydrogen compounds of group-IV nanosheets , 2010, 1007.2110.

[9]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[10]  T. M. Donovan,et al.  Evidence for A Sharp Absorption Edge in Amorphous Ge , 1969 .

[11]  M. Cardona,et al.  Infrared absorption in hydrogenated amorphous and crystallized germanium , 1979 .

[12]  Y. Chabal,et al.  Hydrogen passivation of germanium (100) surface using wet chemical preparation , 2005 .

[13]  M. Stutzmann,et al.  Efficient tunable luminescence of SiGe alloy sheet polymers , 2001 .

[14]  Friedhelm Bechstedt,et al.  Strong excitons in novel two-dimensional crystals: Silicane and germanane , 2012 .

[15]  K. Kugel,et al.  A stable "flat" form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? , 2012, Nano letters.

[16]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[17]  H. Kautsky,et al.  Über das Siloxen und seine Derivate , 1924 .

[18]  C. Gaiser,et al.  Band-gap engineering with HfS x Se 2-x , 2004 .

[19]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[20]  P. Lee,et al.  On the optical properties of some layer compounds , 1969 .

[21]  S. Yamanaka,et al.  New deintercalation reaction of calcium from calcium disilicide. Synthesis of layered polysilane , 1996 .

[22]  Carlos Frederico de Oliveira Graeff,et al.  The Perspectives of Hydrogenated Amorphous Germanium as an Electronic Material , 1995 .

[23]  A. Karttunen,et al.  Bulk Synthesis and Structure of a Microcrystalline Allotrope of Germanium (m-allo-Ge) , 2011 .

[24]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[25]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[26]  U. Kortshagen,et al.  Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals. , 2011, Nano letters.

[27]  G. Hughes,et al.  An X-ray photoelectron spectroscopy study of the HF etching of native oxides on Ge(111) and Ge(100) surfaces , 1998 .

[28]  S. Pantelides,et al.  First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering , 2009 .

[29]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[30]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[32]  Eric Borguet,et al.  Ambient stability of chemically passivated germanium interfaces , 2003 .

[33]  James M Tour,et al.  Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. , 2008, Journal of the American Chemical Society.

[34]  Martin Stutzmann,et al.  Polygermyne—A Prototype System for Layered Germanium Polymers , 2000 .

[35]  M. Cardona Vibrational Spectra of Hydrogen in Silicon and Germanium , 1983 .

[36]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[37]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[38]  Tom Regier,et al.  Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. , 2011, Nature materials.

[39]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[40]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[41]  P. Kamat,et al.  TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. , 2008, ACS nano.

[42]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[43]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[44]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[45]  Claudia Ambrosch-Draxl,et al.  Time-dependent density functional theory versus Bethe-Salpeter equation: an all-electron study. , 2009, Physical chemistry chemical physics : PCCP.

[46]  S. Yamaguchi,et al.  Silicon nanosheets and their self-assembled regular stacking structure. , 2010, Journal of the American Chemical Society.

[47]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[48]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.