RITZ AND PSEUDO-RITZ VALUES USING MATRIX POLYNOMIALS
暂无分享,去创建一个
[1] Ilse C. F. Ipsen,et al. GMRES and the minimal polynomial , 1996 .
[2] Walter Van Assche,et al. Orthogonal matrix polynomials and applications , 1996 .
[3] Avram Sidi,et al. Application of Vector-Valued Rational Approximations to the Matrix Eigenvalue Problem and Connections with Krylov Subspace Methods , 1995, SIAM J. Matrix Anal. Appl..
[4] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[5] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[6] Thomas A. Manteuffel,et al. On the roots of the orthogonal polynomials and residual polynomials associated with a conjugate gradient method , 1994, Numer. Linear Algebra Appl..
[7] Horst D. Simon,et al. A New Approach to Construction of Efficient Iterative Schemes for Massively Parallel Applications: Variable Block CG and BiCG Methods and Variable Block Arnoldi Procedure , 1993, PPSC.
[8] M. Sadkane. A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .
[9] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[10] Lloyd N. Trefethen,et al. A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[11] L. Schumaker,et al. Numerical methods in approximation theory , 1992 .
[12] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[13] L. Trefethen. Approximation theory and numerical linear algebra , 1990 .
[14] Mark David Kent. Chebyshev, Krylov, Lanczos : matrix relationships and computations , 1989 .
[15] F. Chatelin. Valeurs propres de matrices , 1988 .
[16] J. Mason,et al. Algorithms for approximation , 1987 .
[17] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[18] J. Maroulas. Factorization of matrix polynomials with multiple roots , 1985 .
[19] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[20] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[21] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[22] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .