Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study

Crystal defects can be identified by their fingerprint in coherent X-ray diffraction patterns. Realistic defects in face-centred cubic nanocrystals are studied numerically, revealing various signatures in diffraction patterns depending on the Miller indices and providing an identification method.

[1]  Marc Fivel,et al.  Discrete modeling of the mechanics of entangled materials. , 2005, Physical review letters.

[2]  M. Newton,et al.  Three-dimensional imaging of strain in a single ZnO nanorod. , 2010, Nature materials.

[3]  J C Hamilton,et al.  An embedded-atom potential for the Cu–Ag system , 2006 .

[4]  Kazuto Yamauchi,et al.  Bragg x-ray ptychography of a silicon crystal: Visualization of the dislocation strain field and the production of a vortex beam , 2013 .

[5]  Bulk dislocation core dissociation probed by coherent x rays in silicon. , 2011 .

[6]  Karsten Wedel Jacobsen,et al.  SIMULATIONS OF THE ATOMIC STRUCTURE, ENERGETICS, AND CROSS SLIP OF SCREW DISLOCATIONS IN COPPER , 1997 .

[7]  V. Chamard,et al.  3D strain imaging in sub-micrometer crystals using cross-reciprocal space measurements: Numerical feasibility and experimental methodology , 2010 .

[8]  R. Twesten,et al.  Measurement of diffuse electron scattering by single nanometre-sized defects in gold , 2005 .

[9]  I. Robinson,et al.  Atomistic simulation of diffuse x-ray scattering from defects in solids , 2000 .

[10]  Marc Legros,et al.  Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni , 2011 .

[11]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[12]  B. Fultz,et al.  Transmission electron microscopy and diffractometry of materials , 2001 .

[13]  W. Kaplan,et al.  Au–Sapphire (0001) solid–solid interfacial energy , 2006 .

[14]  A. Diaz,et al.  Three-dimensional high-resolution quantitative microscopy of extended crystals. , 2011, Nature communications.

[15]  D. Cockayne,et al.  The measurement of stacking-fault energies of pure face-centred cubic metals , 1971 .

[16]  M. Verdier,et al.  Strain inhomogeneity in copper islands probed by coherent X-ray diffraction , 2013 .

[17]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[18]  D. Carbone,et al.  Counting dislocations in microcrystals by coherent x-ray diffraction. , 2013, Physical review letters.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  D. Sayre Some implications of a theorem due to Shannon , 1952 .

[21]  R. Smallman,et al.  The dependence of rolling texture on stacking fault energy , 1964 .

[22]  Y. Xin,et al.  Enhanced spin-triplet superconductivity near dislocations in Sr2RuO4 , 2013, Nature Communications.

[23]  H. Trinkaus On Determination of the Double-Force Tensor of Point Defects in Cubic Crystals by Diffuse X-Ray Scattering , 1972 .

[24]  D. Srolovitz,et al.  Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study , 2011 .

[25]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[26]  M. Verdier,et al.  Combined coherent x-ray micro-diffraction and local mechanical loading on copper nanocrystals , 2013, 1305.7013.

[27]  W. M. Levitt,et al.  EFFECTS OF RADIATION , 1958, Lancet.

[28]  F. Yakhou,et al.  Charge density wave dislocation as revealed by coherent x-ray diffraction. , 2005, Physical review letters.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  J. Steeds Dislocation arrangement in copper single crystals as a function of strain , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  W. L Winterbottom,et al.  Equilibrium shape of a small particle in contact with a foreign substrate , 1967 .

[32]  K. H. Westmacott,et al.  A rationalization of secondary defect structures in aluminium-based alloys , 1971 .

[33]  Time-dependent relaxation of strained silicon-on-insulator lines using a partially coherent x-ray nanobeam. , 2013, Physical review letters.

[34]  A. Wilson The diffraction of X‐rays by distorted‐crystal aggregates. IV. Diffraction by a crystal with an axial screw dislocation , 1952 .

[35]  M. Burghammer,et al.  Coherent x-ray diffraction imaging with nanofocused illumination. , 2008, Physical review letters.

[36]  M. Gailhanou,et al.  Displacement field of a screw dislocation in a 〈 011 〉 Cu nanowire: An atomistic study , 2013 .

[37]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[38]  F. Young,et al.  X-ray diffuse scattering study of irradiation induced dislocation loops in copper†‡ , 1987 .

[39]  M. Verdier,et al.  Scanning force microscope for in situ nanofocused X-ray diffraction studies , 2014, Journal of synchrotron radiation.

[40]  R. Harder,et al.  Coherent X-ray diffraction imaging of strain at the nanoscale. , 2009, Nature materials.

[41]  D. Hull,et al.  Introduction to Dislocations , 1968 .

[42]  S. Dudarev,et al.  Diffuse elastic scattering of electrons by individual nanometer-sized dislocation loops , 2006 .

[43]  A. Wilson The effects of dislocations on X-ray diffraction , 1955 .

[44]  G. Pharr,et al.  Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars , 2008 .

[45]  C. D. Novion,et al.  Elastic diffuse neutron scattering study of the defect structure of TiC0.76 and NbC0.73 , 1981 .

[46]  Ian McNulty,et al.  Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused X-ray Bragg projection ptychography. , 2012, Nano letters.

[47]  C. B. Carter,et al.  On the stacking-fault energies of copper alloys , 1977 .

[48]  Ana Diaz,et al.  Imaging the displacement field within epitaxial nanostructures by coherent diffraction: a feasibility study , 2010 .

[49]  S. Dudarev,et al.  Simulations of electron elastic diffuse scattering patterns from individual nanometre-sized dislocation loops. I. Kinematical methodology , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  V. Favre-Nicolin,et al.  Fast computation of scattering maps of nanostructures using graphical processing units , 2010, 1010.2641.

[51]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[52]  V. Chamard,et al.  Evidence of stacking-fault distribution along an InAs nanowire using micro-focused coherent X-ray diffraction , 2008 .

[53]  M. Jenkins Measurement of the stacking-fault energy of gold using the weak-beam technique of electron microscopy , 1972 .

[54]  S. Wilkins,et al.  Spin density wave dislocation in chromium probed by coherent X-ray diffraction , 2009, 0910.4252.

[55]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[56]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[57]  Frédéric Livet,et al.  Diffraction with a coherent X-ray beam: dynamics and imaging , 2007, Acta Crystallographica Section A: Foundations of Crystallography.

[58]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[59]  H. Proudhon,et al.  Finite element simulations of coherent diffraction in elastoplastic polycrystalline aggregates , 2010 .

[60]  S. Russo,et al.  On fitting a gold embedded atom method potential using the force matching method. , 2005, The Journal of chemical physics.

[61]  A. Kelly,et al.  Independent slip systems in crystals , 1963 .

[62]  A. K. Head,et al.  The Influence of Large Elastic Anisotropy on the Determination of Burgers Vectors of Dislocations in β-Brass by Electron Microscopy , 1967 .

[63]  P. Ehrhart,et al.  Diffuse scattering from dislocation loops , 1982 .

[64]  M. Woolfson Theory of X-ray and thermal-neutron scattering by real crystals , 1971 .

[65]  Garth J. Williams,et al.  Three-dimensional mapping of a deformation field inside a nanocrystal , 2006, Nature.

[66]  P. Dederichs The theory of diffuse X-ray scattering and its application to the study of point defects and their clusters , 1973 .

[67]  B. M. Borg,et al.  Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging , 2009, 0910.5491.

[68]  Ferdinand Scholz,et al.  X-ray diffuse scattering from threading dislocations in epitaxial GaN layers , 2010 .

[69]  S. Lee,et al.  Size effect in compression of single-crystal gold microparticles , 2011 .

[70]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[71]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[72]  Mark Sutton,et al.  A review of X-ray intensity fluctuation spectroscopy , 2008 .

[73]  G. Aeppli,et al.  Differential stress induced by thiol adsorption on facetted nanocrystals. , 2011, Nature materials.

[74]  Arthur F. Voter,et al.  Structural stability and lattice defects in copper: Ab initio , tight-binding, and embedded-atom calculations , 2001 .

[75]  I. Robinson,et al.  Coherent diffraction patterns of individual dislocation strain fields , 2005 .

[76]  B. Larson,et al.  Huang Diffuse Scattering from Dislocation Loops , 1980 .

[77]  P. Dederichs Diffuse Scattering from Defect Clusters near Bragg Reflections , 1971 .

[78]  Tilo Baumbach,et al.  Applicability of an iterative inversion algorithm to the diffraction patterns from inhomogeneously strained crystals , 2008 .