Metabolic systems analysis to advance algal biotechnology

Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine‐tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome‐scale model‐driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Network analysis can direct microbial development efforts towards successful strategies and enable quantitative fine‐tuning of the network for optimal product yields while maintaining the robustness of the production microbe. Metabolic modeling yields insights into microbial function, guides experiments by generating testable hypotheses, and enables the refinement of knowledge on the specific organism. While the application of such analytical approaches to algal systems is limited to date, metabolic network analysis can improve understanding of algal metabolic systems and play an important role in expediting the adoption of new biofuel technologies.

[1]  M. Inui,et al.  Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli , 2008, Applied Microbiology and Biotechnology.

[2]  Claude W. dePamphilis,et al.  The Chlamydomonas reinhardtii Plastid Chromosome , 2002, The Plant Cell Online.

[3]  C. Lan,et al.  Biofuels from Microalgae , 2008, Biotechnology progress.

[4]  J. Nielsen,et al.  From genomes to in silico cells via metabolic networks. , 2005, Current opinion in biotechnology.

[5]  F. Srienc,et al.  Minimal Escherichia coli Cell for the Most Efficient Production of Ethanol from Hexoses and Pentoses , 2008, Applied and Environmental Microbiology.

[6]  Bor-Sen Chen,et al.  Robust synthetic biology design: stochastic game theory approach , 2009, Bioinform..

[7]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[8]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[9]  J Villadsen,et al.  Metabolic flux distributions in Penicillium chrysogenum during fed‐batch cultivations , 1995, Biotechnology and bioengineering.

[10]  M. Kanehisa,et al.  Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization , 2007, Photosynthesis Research.

[11]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[12]  S. Lee,et al.  Metabolic flux analysis and metabolic engineering of microorganisms. , 2008, Molecular bioSystems.

[13]  Koji Kawabata,et al.  Complete Chemical Synthesis , Assembly , and Cloning of a Mycoplasma genitalium Genome , 2008 .

[14]  D. Fell,et al.  A Genome-Scale Metabolic Model of Arabidopsis and Some of Its Properties1[C][W] , 2009, Plant Physiology.

[15]  R. Haselkorn,et al.  Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment , 2006, Proceedings of the National Academy of Sciences.

[16]  K. Cassman,et al.  Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn‐Ethanol , 2009 .

[17]  Emily Waltz,et al.  Biotech's green gold? , 2009, Nature Biotechnology.

[18]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[19]  Lawrence E. Page,et al.  Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina , 2008, Proceedings of the National Academy of Sciences.

[20]  John A. Morgan,et al.  BMC Systems Biology BioMed Central Research article , 2009 .

[21]  G. Michaelis,et al.  Mitochondrial DNA of Chlamydomonas reinhardtii: The gene for apocytochrome b and the complete functional map of the 15.8 kb DNA , 1990, Molecular and General Genetics MGG.

[22]  P. Boer,et al.  Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  Lewis M. Brown,et al.  Uptake of carbon dioxide from flue gas by microalgae , 1996 .

[24]  James A. Eddy,et al.  Accomplishments in genome‐scale in silico modeling for industrial and medical biotechnology , 2009, Biotechnology journal.

[25]  Jochen Förster,et al.  Modeling Lactococcus lactis using a genome-scale flux model , 2005, BMC Microbiology.

[26]  W. A. Amos,et al.  Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report , 2004 .

[27]  Huimin Zhao,et al.  Industrial biotechnology: Tools and applications , 2009, Biotechnology journal.

[28]  A. Darzins,et al.  The promise and challenges of microalgal‐derived biofuels , 2009 .

[29]  Anna Eliasson Lantz,et al.  Systems Biology of Antibiotic Production by Microorganisms , 2008 .

[30]  W. D. de Vos,et al.  Functional ingredient production: application of global metabolic models. , 2005, Current opinion in biotechnology.

[31]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[32]  Matthias Heinemann,et al.  Synthetic biology - putting engineering into biology , 2006, Bioinform..

[33]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[34]  Jens Rupprecht,et al.  From systems biology to fuel--Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. , 2009, Journal of biotechnology.

[35]  L. Quek,et al.  AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis1[W] , 2009, Plant Physiology.

[36]  Miller Tran,et al.  Chlamydomonas reinhardtii chloroplasts as protein factories. , 2007, Current opinion in biotechnology.

[37]  B. Palsson The challenges of in silico biology , 2000, Nature Biotechnology.

[38]  Rolf Apweiler,et al.  IntEnz, the integrated relational enzyme database , 2004, Nucleic Acids Res..

[39]  M. Huntley,et al.  CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal , 2007 .

[40]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[41]  S. Lee,et al.  Systems metabolic engineering of Escherichia coli for L-threonine production , 2007, Molecular systems biology.

[42]  Gilles Peltier,et al.  Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas , 2007, Proceedings of the National Academy of Sciences.

[43]  S. Lee,et al.  Strategies for systems‐level metabolic engineering , 2008, Biotechnology journal.

[44]  Timothy S. Ham,et al.  Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. , 2008, Current opinion in biotechnology.

[45]  K. Zeiler,et al.  96/03363 - The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas , 1996 .

[46]  In silico analysis of the effects of H2 and CO2 on the metabolism of a capnophilic bacterium Mannheimia succiniciproducens. , 2009, Journal of biotechnology.

[47]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[48]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[49]  J. Nielsen,et al.  Industrial systems biology. , 2010, Biotechnology and bioengineering.

[50]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[51]  B O Palsson,et al.  Metabolic modeling of microbial strains in silico. , 2001, Trends in biochemical sciences.

[52]  B. Usadel,et al.  Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake. , 2010, The Plant journal : for cell and molecular biology.

[53]  Jason A. Papin,et al.  Metabolic network analysis integrated with transcript verification for sequenced genomes , 2009, Nature Methods.

[54]  Olaf Kruse,et al.  Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. , 2007, Physiologia plantarum.

[55]  G. Stephanopoulos,et al.  Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? , 2009, Nature Reviews Microbiology.

[56]  Jeff Shrager,et al.  Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information1 , 2003, Plant Physiology.

[57]  George M Church,et al.  Towards synthesis of a minimal cell , 2006, Molecular systems biology.

[58]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[59]  Brian Curtis,et al.  2007 Year in Review - U.S. Ethanol Industry: The Next Inflection Point , 2008 .

[60]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[61]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[62]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[63]  Jason A Papin,et al.  Flux balance analysis: interrogating genome-scale metabolic networks. , 2009, Methods in molecular biology.

[64]  Hyohak Song,et al.  Genome-Based Metabolic Engineering of Mannheimia succiniciproducens for Succinic Acid Production , 2006, Applied and Environmental Microbiology.

[65]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[66]  Sang Yup Lee,et al.  The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens , 2004, Nature Biotechnology.

[67]  J. Nielsen,et al.  In silico genome‐scale reconstruction and validation of the Corynebacterium glutamicum metabolic network , 2009, Biotechnology and bioengineering.

[68]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[69]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[70]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[71]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[72]  Stephen S. Fong,et al.  Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production , 2010, BMC Systems Biology.

[73]  Jong Myoung Park,et al.  Genome-scale analysis of Mannheimia succiniciproducens metabolism. , 2007, Biotechnology and bioengineering.

[74]  E. Nevoigt,et al.  Progress in Metabolic Engineering of Saccharomyces cerevisiae , 2008, Microbiology and Molecular Biology Reviews.

[75]  Andrew C. Tolonen,et al.  The genome of a motile marine Synechococcus , 2003, Nature.

[76]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[77]  T. Kuroiwa,et al.  A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae , 2007, BMC Biology.

[78]  Peter Graf,et al.  Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae , 2007 .

[79]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[80]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[81]  S. Lee,et al.  In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. , 2002, Genome informatics. International Conference on Genome Informatics.

[82]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[83]  Sang Yup Lee,et al.  Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network , 2008, Applied Microbiology and Biotechnology.

[84]  Bor-Sen Chen,et al.  A systematic design method for robust synthetic biology to satisfy design specifications , 2009, BMC Systems Biology.

[85]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[86]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[87]  S. K. Masakapalli,et al.  Subcellular Flux Analysis of Central Metabolism in a Heterotrophic Arabidopsis Cell Suspension Using Steady-State Stable Isotope Labeling1[W][OA] , 2009, Plant Physiology.

[88]  M. Chinn,et al.  Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. , 2007, Bioresource technology.

[89]  B. De Baets,et al.  Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. , 2006, Proceedings of the National Academy of Sciences of the United States of America.