CH3OH abundance in low mass protostars

We present observations of methanol lines in a sample of Class 0 low mass protostars. Using a 1-D radiative transfer model, we derive the abundances in the envelopes. In two sources of the sample, the observations can only be reproduced by the model if the methanol abundance is enhanced by about two order of magnitude in the inner hot region of the envelope. Two other sources show similar jumps, although at a lower confidence level. The observations for the other three sources are well reproduced with a constant abundance, but the presence of a jump cannot be ruled out. The observed methanol abundances in the warm gas around low mass protostars are orders of magnitude higher than gas phase chemistry models predict. Hence, in agreement with other evidence, this suggests that the high methanol abundance reflects recent evaporation of ices due to the heating by the newly formed star. The observed abundance ratios of CH3OH, H2CO and CO are in good agreement with grain surface chemistry models. However, the absolute abundances are more difficult to reproduce and may indicate the presence of multiple ice components in these regions.

[1]  P. Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2005 .

[2]  Cecilia Ceccarelli,et al.  Near-Arcsecond Resolution Observations of the Hot Corino of the Solar-Type Protostar IRAS 16293–2422 , 2004, astro-ph/0410601.

[3]  A. Kouchi,et al.  Conversion of H2CO to CH3OH by Reactions of Cold Atomic Hydrogen on Ice Surfaces below 20 K , 2004 .

[4]  ASIAA,et al.  Organic Molecules in Low-Mass Protostellar Hot Cores: Submillimeter Imaging of IRAS 16293–2422 , 2004, astro-ph/0410027.

[5]  T. Millar,et al.  The chemistry of multiply deuterated species in cold, dense interstellar cores , 2004 .

[6]  P. Schilke,et al.  Methanol as a diagnostic tool of interstellar clouds - I. Model calculations and application to molecular clouds , 2004 .

[7]  Stephen L. Davis,et al.  The rotational excitation of methanol by para‐hydrogen , 2004 .

[8]  E. Dartois,et al.  Mapping ices in protostellar environments on 1000 AU scales - Methanol-rich ice in the envelope of Serpens SMM 4 , 2004, astro-ph/0407316.

[9]  Institute for Astronomy,et al.  Complex Molecules in the Hot Core of the Low-Mass Protostar NGC 1333 IRAS 4A , 2004, astro-ph/0407154.

[10]  A. Tielens,et al.  Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .

[11]  E. F. Dishoeck,et al.  On the origin of H2CO abundance enhancements in low-mass protostars , 2004, astro-ph/0401635.

[12]  L. Observatory,et al.  Molecular inventories and chemical evolution of low-mass protostellar envelopes , 2003, astro-ph/0312231.

[13]  C. I. O. Technology.,et al.  The impact of shocks on the chemistry of molecular clouds High resolution images of chemical differentiation along the NGC 1333-IRAS 2A outflow , 2003, astro-ph/0311132.

[14]  A. Tielens,et al.  First detection of triply-deuterated methanol , 2003, astro-ph/0311038.

[15]  A. Tielens,et al.  The H2CO abundance in the inner warm regions of low mass protostellar envelopes , 2003, astro-ph/0310536.

[16]  D. Teyssier,et al.  The Hot Core around the Low-Mass Protostar IRAS 16293–2422: Scoundrels Rule! , 2003 .

[17]  A. Tielens,et al.  A 3-5 mu m VLT spectroscopic survey of embedded young low mass stars I - Structure of the CO ice , 2003, astro-ph/0307097.

[18]  S. Charnley,et al.  Chemical Evolution in Protostellar Envelopes: Cocoon Chemistry , 2003 .

[19]  Alexander G. G. M. Tielens,et al.  Doubly deuterated formaldehyde in star-forming regions: an observational approach , 2002 .

[20]  A. Tielens,et al.  Water emission in NGC 1333 IRAS 4 - The physical structure of the envelope , 2002, astro-ph/0209366.

[21]  A. Tielens,et al.  Detection of doubly-deuterated methanol in the solar-type protostar IRAS 16293-2422 , 2002, astro-ph/0207577.

[22]  E. F. Dishoeck,et al.  Does IRAS 16293–2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment , 2002, astro-ph/0205457.

[23]  E. Dishoeck,et al.  Physical structure and CO abundance of low-mass protostellar envelopes , 2002, astro-ph/0205068.

[24]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[25]  E. Bergin,et al.  A Study of the Physics and Chemistry of L134N , 2000 .

[26]  G. Blake,et al.  Structure and Evolution of the Envelopes of Deeply Embedded Massive Young Stars , 2000, astro-ph/0001527.

[27]  T. Prusti,et al.  Observations of Solid Carbon Dioxide in Molecular Clouds with the Infrared Space Observatory , 1999 .

[28]  A. Tielens,et al.  Processing of Icy Mantles in Protostellar Envelopes , 1998, The Astrophysical journal.

[29]  M. P. Gutiérrez,et al.  Shock Chemistry in the Young Bipolar Outflow L1157 , 1997 .

[30]  A. Adamson,et al.  Three Micron Hydrocarbon and Methanol Absorption in Taurus , 1996 .

[31]  W. Langer,et al.  The IRAS 2 and IRAS 4 Outflows and Star Formation in NGC 1333 , 1996 .

[32]  G. Blake,et al.  Molecular Abundances and Low-Mass Star Formation. II. Organic and Deuterated Species toward IRAS 16293-2422 , 1995 .

[33]  W. Danchi,et al.  The distribution of molecules in the core of OMC-1 , 1995 .

[34]  L. Mundy,et al.  A molecular line study of NGC 1333/IRAS 4. , 1995, The Astrophysical journal.

[35]  S. Sandford,et al.  Condensation and vaporization studies of CH3OH and NH3 ices: major implications for astrochemistry. , 1993, The Astrophysical journal.

[36]  P. Caselli,et al.  Chemical differentiation between star-forming regions : the Orion Hot Core and Compact Ridge , 1993 .

[37]  A. Tielens,et al.  On the molecular complexity of the hot cores in Orion A - Grain surface chemistry as 'The last refuge of the scoundrel' , 1992 .

[38]  S. Sandford,et al.  Infrared spectroscopy of dense clouds in the C-H stretch region: methanol and "diamonds." , 1992, The Astrophysical journal.

[39]  M. Barlow,et al.  Methanol ice in the protostar GL 2136 , 1992 .

[40]  A. Tielens,et al.  Interstellar solid CO: polar and nonpolar interstellar ices. , 1991, The Astrophysical journal.

[41]  K. Černis Interstellar extinction in the vicinity of the reflection nebula NGC 1333 in Perseus , 1990 .

[42]  R. Lees On the El-E2 Labeling of Energy Levels and the Anomalous Excitation of Interstellar Methanol , 1973 .

[43]  R. Lees,et al.  Torsion–Vibration–Rotation Interactions in Methanol. I. Millimeter Wave Spectrum , 1968 .

[44]  G. Fuller,et al.  The interaction between protostars and their environment: Carbon-bearing species towards low mass protostars , 2002 .

[45]  G. Morfill,et al.  Physical processes in interstellar clouds , 1987 .