Linear Paul trap for strontium ions

We demonstrate a linear radio-frequency trap for confining strontium ions that is simply constructed nearly entirely with commercial off-the-shelf components. The electrodes of this trap are spaced to allow tight radial confinement, and segmented to give tight axial confinement with minimal distortion of the radio-frequency field. The resulting secular frequencies of the trap are 1 MHz in the radial direction and 100 kHz in the axial direction, the ions can be imaged with 2–3 μm resolution, and we detect over 20 000 photons per second per ion. This article describes the construction of the vital parts of the trap system, the laser system and optics used to Doppler cool the ions and to observe quantum jumps, and the operation and behavior of the complete system.

[1]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[2]  D. M. Lucas,et al.  Precision Measurement of the Lifetime of the 3d 2 D 5/2 state in 40 Ca + , 2000 .

[3]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[4]  Young,et al.  Sub-dekahertz ultraviolet spectroscopy of 199Hg+ , 2000, Physical review letters.

[5]  Coherent excitation of normal modes in a string of Ca+ ions. , 1998, Optics express.

[6]  David J. Wineland,et al.  Cryogenic linear ion trap for accurate spectroscopy , 1996 .

[7]  W. W. Macalpine,et al.  Coaxial Resonators with Helical Inner Conductor , 1959, Proceedings of the IRE.

[8]  Alan A. Madej,et al.  Rb atomic absorption line reference for single Sr+ laser cooling systems , 1998 .

[9]  Aidan S. Arnold,et al.  A simple extended-cavity diode laser , 1998 .

[10]  L. Maleki,et al.  New ion trap for frequency standard applications , 1989 .

[11]  E. Polzik,et al.  High efficiency second harmonic generation with a low power diode laser , 1997 .

[12]  K. Dholakia,et al.  Spectroscopy and quantum optics with ion traps , 1997 .

[13]  K. Hayasaka,et al.  Laser cooling and isotope separation of Cd(+) ions conf ined in a linear Paul trap. , 1997, Optics letters.

[14]  A. Steane,et al.  Quantum Computing with Trapped Ions, Atoms and Light , 2000, quant-ph/0004053.

[15]  V. D. Sandberg,et al.  The Los Alamos Trapped Ion Quantum Computer Experiment , 1998 .

[16]  A. Madej,et al.  Tunable, frequency narrowed Nd3+-doped fiber laser for excitation of the 5p 2P12-4d 2D32 transition in Sr+ , 1989 .

[17]  M. Block,et al.  3d D lifetime in laser cooled Ca : Influence of cooling laser power , 1999 .

[18]  H. Shugart,et al.  Atomic Physics 5 , 1977 .

[19]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[20]  M. G. Boshier,et al.  Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems , 2002 .

[21]  L. Goldberg,et al.  Second-harmonic generation at 421 nm using injection-locked GaAlAs laser array and KNbO3 , 1988 .