Tensile and flexural creep rupture tests on partially-damaged concrete specimens

Three series of novel tensile and flexural creep tests on partially-damaged concrete specimens were carried out in order to gain some insight into creep crack growth and failure of strain-softening materials. In the tests, each specimen was initially loaded to a given point in the descending branch and thus had a lower load-carrying capacity than that at the peak-point. Then, the specimen was unloaded and reloaded to sustain a load which was from 70% to 95% of its current load-carrying capacity. Experimental creep curves display a three-stage process, consisting of primary, secondary and tertiary stages, with a decreasing, constant and increasing creep rate, respectively. The secondary stage dominates the whole failure lifetime, whereas both the secondary and tertiary stages are important in terms of creep deformation. Failure life-time seems to be more sensitive to the change of load level in flexural tests rather than in tensile tests. The decrease in load-carrying capacity due to damage tends to result in a shorter failure lifetime and a lower critical load level for creep rupture. The descending branch of the static load-deflection or load-CMOD curve may be used as an envelope criterion for creep fracture.RésuméTrois séries d'essais innovants de fluage à la traction et à la flexion ont été effectuées sur des éprouvettes de béton partiellement endommagées pour étudier la propagation de la fissuration et la rupture des matériaux radoucis. Chaque éprouvette a d'abord été chargée jusqu'à un point donné de la branche descendante, de manière à ce que sa capacité de charge soit inférieure à la charge maximale. Ensuite, l'éprouvette a été déchargée et rechargée pour supporter une charge entre 70% et 95% de sa capacité de charge existante. Les courbes expérimentales du fluage révèlent un processus en trois phases: primaire, secondaire et tertiaire, ayant une vitesse de fluage respectivement décroissante, constante et croissante. La phase secondaire domine pour la durée de vie jusqu'à la rupture, tandis que les phases secondaire et tertiaire sont importantes pour la déformation de fluage. La durée de vie jusqu'à la rupture semble être plus sensible au changement du niveau de charge dans les essais de flexion que dans les essais de traction. La réduction de la capacité de charge due à l'endommagement semble entraîner une plus courte durée de vie jusqu'à la rupture et un niveau inférieur de charge critique pour la rupture de fluage. La branche descendante des courbes statiques chargefléchissement ou charge-CMOD peut être utilisée comme critère enveloppe pour la rupture de fluage.

[1]  Sidney Mindess,et al.  Rate of Loading Effects on the Fracture of Cementitious Materials , 1985 .

[2]  R. Goodman Introduction to Rock Mechanics , 1980 .

[3]  Surendra P. Shah,et al.  Fracture of Concrete Subjected to Cyclic and Sustained Loading , 1970 .

[4]  F. Wittmann Influence of Time on Crack Formation and Failure of Concrete , 1985 .

[5]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[6]  A. G. Young,et al.  Failure of concrete under sustained tension , 1975 .

[7]  J O Jirsa,et al.  BEHAVIOUR OF CONCRETE UNDER COMPRESSIVE LOADING , 1969 .

[8]  Fan Ping Zhou,et al.  Time-dependent crack growth and fracture in concrete , 1992 .

[9]  Walid A. Haroun Uniaxial tensile creep and failure of concrete , 1968 .

[10]  M. Kanninen,et al.  Advanced Fracture Mechanics , 1986 .

[11]  Silvio Valente,et al.  Experimental and Numerical Fracture Modelling of a Gravity Dam , 1994, SP-143: New Experimental Techniques for Evaluating Concrete Material & Structural Performance.

[12]  Lennart Elfgren,et al.  Fracture mechanics of concrete structures : from theory to applications : report of the Technical Committee 90-FMA Fracture Mechanics to Concrete/Applications, RILEM (the International Union of Testing and Research Laboratories for Materials and Structures) , 1989 .

[13]  Rilem FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[14]  Alberto Carpinteri,et al.  Applications of Fracture Mechanics to Reinforced Concrete , 2018 .

[15]  R. E. Robertson,et al.  Prevention of air void formation in polymer-modified cement mortar by pre-wetting , 1997 .