Wavelet-Based Diagnostics of Paroxysmal Activity in EEG and Brain-Computer Interfaces for Epilepsy Control

[1]  Alexander Hramov,et al.  On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. , 2006, Chaos.

[2]  Alexander Hramov,et al.  Spike–wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus , 2011, Clinical Neurophysiology.

[3]  Gilles van Luijtelaar,et al.  Thalamic lesions in a genetic rat model of absence epilepsy: Dissociation between spike-wave discharges and sleep spindles , 2009, Experimental Neurology.

[4]  A. Loomis,et al.  POTENTIAL RHYTHMS OF THE CEREBRAL CORTEX DURING SLEEP. , 1935, Science.

[5]  Alexey Ovchinnikov,et al.  An algorithm for real-time detection of spike-wave discharges in rodents , 2010, Journal of Neuroscience Methods.

[6]  R. Morison,et al.  MECHANISM OF THALAMOCORTICAL AUGMENTATION AND REPETITION , 1943 .

[7]  K. Lehnertz,et al.  The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy , 2001, Epilepsy Research.

[8]  Edward M. Schmidt,et al.  Computer separation of multi-unit neuroelectric data: a review , 1984, Journal of Neuroscience Methods.

[9]  P Gloor,et al.  Generalized Cortico‐Reticular Epilepsies Some Considerations on the Pathophysiology of Generalized Bilaterally Synchronous Spike and Wave Discharge , 1968, Epilepsia.

[10]  Patrick E. McSharry,et al.  Prediction of epileptic seizures: are nonlinear methods relevant? , 2003, Nature Medicine.

[11]  Daniel Hamacher,et al.  Brain activity during walking: A systematic review , 2015, Neuroscience & Biobehavioral Reviews.

[12]  Evgenia Sitnikova,et al.  Electroencephalographic Characterization of Spike‐Wave Discharges in Cortex and Thalamus in WAG/Rij Rats , 2007, Epilepsia.

[13]  E.L.J.M. van Luijtelaar,et al.  Spike-wave discharges and sleep spindles in rats. , 1997, Acta neurobiologiae experimentalis.

[14]  G. van Luijtelaar,et al.  Timing of high-frequency cortical stimulation in a genetic absence model , 2016, Neuroscience.

[15]  Antti Saastamoinen,et al.  Development and comparison of four sleep spindle detection methods , 2007, Artif. Intell. Medicine.

[16]  S. Charpier,et al.  Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures , 2007, The Journal of Neuroscience.

[17]  A. Coenen,et al.  Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats , 1992, Epilepsy Research.

[18]  W. Spencer,et al.  ELECTRICAL PATTERNS OF AUGMENTING AND RECRUITING WAVES IN DEPTHS OF SENSORIMOTOR CORTEX OF CAT , 1961 .

[19]  K. Blinowska,et al.  High resolution study of sleep spindles , 1999, Clinical Neurophysiology.

[20]  A. E. Hramov,et al.  Принципы диагностики незрелой эпилептической (проэпилептической) активности на ЭЭГ у крыс с генетической предрасположенностью к абсанс-эпилепсии , 2019 .

[21]  C. Gottesmann,et al.  The Transition from Slow-wave Sleep to Paradoxical Sleep: Evolving Facts and Concepts of the Neurophysiological Processes Underlying the Intermediate Stage of Sleep , 1996, Neuroscience & Biobehavioral Reviews.

[22]  D. Pinault,et al.  Medium-voltage 5–9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons , 2001, Neuroscience.

[23]  B. Jobst,et al.  Brain stimulation for surgical epilepsy , 2010, Epilepsy Research.

[24]  G. D. Kuznetsova,et al.  The Time–Frequency Structure of the Spike–Wave Discharges in Genetic Absence Epilepsy , 2004, Doklady Biological Sciences.

[25]  M. Steriade Neuronal Substrates of Sleep and Epilepsy , 2003 .

[26]  A. Coenen,et al.  Spike-wave discharges and sleep-wake states in rats with absence epilepsy , 1991, Epilepsy Research.

[27]  M J Stokes,et al.  EEG-based communication: a pattern recognition approach. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[28]  J.J. Vidal,et al.  Real-time detection of brain events in EEG , 1977, Proceedings of the IEEE.

[29]  A. Coenen,et al.  Circadian rhythmicity in absence epilepsy in rats , 1988, Epilepsy Research.

[30]  Jürgen Kurths,et al.  Statistical Properties and Predictability of Extreme Epileptic Events , 2019, Scientific Reports.

[31]  P. Ossenblok,et al.  Onset and propagation of spike and slow wave discharges in human absence epilepsy: A MEG study , 2009, Epilepsia.

[32]  László Acsády,et al.  Corticothalamic 5–9 Hz oscillations are more pro‐epileptogenic than sleep spindles in rats , 2006, The Journal of physiology.

[33]  G Buzsáki,et al.  Cellular–Synaptic Generation of Sleep Spindles, Spike-and-Wave Discharges, and Evoked Thalamocortical Responses in the Neocortex of the Rat , 1997, The Journal of Neuroscience.

[34]  Abdulhamit Subasi,et al.  Epileptic seizure detection using dynamic wavelet network , 2005, Expert Syst. Appl..

[35]  G. Pfurtscheller,et al.  EEG-based neuroprosthesis control: A step towards clinical practice , 2005, Neuroscience Letters.

[36]  E. Paul,et al.  How reliable is ictal duration to differentiate psychogenic nonepileptic seizures from epileptic seizures? , 2017, Epilepsy & Behavior.

[37]  A. Constanti,et al.  Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development , 2016, Neuroscience & Biobehavioral Reviews.

[38]  Mircea Steriade,et al.  Development from primary to augmenting responses in the somatosensory system , 1981, Brain Research.

[39]  R. Morison,et al.  A STUDY OF THALAMO-CORTICAL RELATIONS , 1941 .

[40]  Bruce J. West,et al.  Wavelet analysis of epileptic spikes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Coenen,et al.  Absence epilepsy and the level of vigilance in rats of the WAG/Rij strain , 1991, Neuroscience & Biobehavioral Reviews.

[42]  Alexey A. Koronovskii,et al.  Method for diagnostics of characteristic patterns of observable time series and its real-time experimental implementation for neurophysiological signals , 2011 .

[43]  A. Coenen,et al.  Ictal stimulus processing during spike-wave discharges in genetic epileptic rats , 2003, Behavioural Brain Research.

[44]  Piotr J Durka,et al.  From wavelets to adaptive approximations: time-frequency parametrization of EEG , 2003, Biomedical engineering online.

[45]  M. Koepp,et al.  Cognitive Function in Genetic Generalized Epilepsies: Insights From Neuropsychology and Neuroimaging , 2020, Frontiers in Neurology.

[46]  Jaimie F Borisoff,et al.  Real-Time Control of a Video Game With a Direct Brain–Computer Interface , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[47]  Alexander E. Hramov,et al.  Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy , 2014, Brain Research.

[48]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[49]  Edward F. Kelly,et al.  Time-frequency analysis of stimulus-driven EEG activity by matching pursuit , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[50]  Terence J O'Brien,et al.  Cellular and network mechanisms of genetically-determined absence seizures. , 2005, Thalamus & related systems.

[51]  Evgenia Sitnikova,et al.  Cortical and thalamic coherence during spike–wave seizures in WAG/Rij rats , 2006, Epilepsy Research.

[52]  A. Hramov,et al.  Slow‐wave activity preceding the onset of 10–15‐Hz sleep spindles and 5–9‐Hz oscillations in electroencephalograms in rats with and without absence seizures , 2020, Journal of sleep research.

[53]  Fabrizio Vecchio,et al.  An electroencephalographic fingerprint of human sleep , 2005, NeuroImage.

[54]  D. Pinault,et al.  Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations , 2003, The Journal of physiology.

[55]  Alexander E Hramov,et al.  From Novel Technology to Novel Applications: Comment on “An Integrated Brain-Machine Interface Platform With Thousands of Channels” by Elon Musk and Neuralink , 2019, Journal of medical Internet research.

[56]  V. Crunelli,et al.  Childhood absence epilepsy: Genes, channels, neurons and networks , 2002, Nature Reviews Neuroscience.

[57]  J. W. Crawley,et al.  The Relationship Between Sleep Spindles and Spike-and-Wave Bursts in Human Epilepsy , 1990 .

[58]  Stiliyan Kalitzin,et al.  Dynamical diseases of brain systems: different routes to epileptic seizures , 2003, IEEE Transactions on Biomedical Engineering.

[59]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update , 2018, Journal of neural engineering.

[60]  Alexander S. Mikhailov,et al.  MUTUAL SYNCHRONIZATION IN ENSEMBLES OF GLOBALLY COUPLED NEURAL NETWORKS , 1998 .

[61]  G. Kostopoulos,et al.  Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis , 2000, Clinical Neurophysiology.

[62]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[63]  A. Berényi,et al.  Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats , 2019, eNeuro.

[64]  Annika Lüttjohann,et al.  The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy , 2012, Neurobiology of Disease.

[65]  Hal Blumenfeld,et al.  From Molecules to Networks: Cortical/Subcortical Interactions in the Pathophysiology of Idiopathic Generalized Epilepsy , 2003, Epilepsia.

[66]  Xiaoming Wu,et al.  Classification of Imaginary Movements in ECoG , 2011, 2011 5th International Conference on Bioinformatics and Biomedical Engineering.

[67]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[68]  Júlio C. Nievola,et al.  Pattern recognition for brain-computer interface on disabled subjects using a wavelet transformation , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[69]  Alexey N. Pavlov,et al.  Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets , 2017 .

[70]  U. Rajendra Acharya,et al.  Automated EEG analysis of epilepsy: A review , 2013, Knowl. Based Syst..

[71]  Gilles van Luijtelaar,et al.  Midfrequency cortico-thalamic oscillations and the sleep cycle: Genetic, time of day and age effects , 2007, Epilepsy Research.

[72]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[73]  M. Belluscio,et al.  Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation , 2012, Science.

[74]  R. McCarley,et al.  Validation of an automated sleep spindle detection method for mouse electroencephalography , 2018, Sleep.

[75]  Lieven Lagae,et al.  Sleep spindle abnormalities in children with generalized spike-wave discharges. , 2007, Pediatric neurology.

[76]  A. Depaulis,et al.  Relationship between spike-wave discharges and vigilance levels in rats with spontaneous petit mal-like epilepsy , 1988, Neuroscience Letters.

[77]  Developmental Changes in the Frequency-Time Structure of Sleep Spindles on the EEG in Rats with a Genetic Predisposition to Absence Epilepsy (WAG/Rij) , 2014, Neuroscience and Behavioral Physiology.

[78]  Tamer Demiralp,et al.  The relationship between age-related development of spike-and-wave discharges and the resistance to amygdaloid kindling in rats with genetic absence epilepsy , 2008, Neurobiology of Disease.

[79]  Annika Lüttjohann,et al.  Absence Seizure Control by a Brain Computer Interface , 2017, Scientific Reports.

[80]  Alexander E. Hramov,et al.  Sleep spindles and spike–wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis , 2009, Journal of Neuroscience Methods.

[81]  A. E. Hramov,et al.  Extreme events in epileptic EEG of rodents after ischemic stroke , 2018, The European Physical Journal Special Topics.

[82]  R. Brunelli Template Matching Techniques in Computer Vision , 2009 .

[83]  Vincenzo Crunelli,et al.  From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid? , 2011, Pflügers Archiv - European Journal of Physiology.

[84]  Li Ke,et al.  Classification of EEG signals by multi-scale filtering and PCA , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[85]  W. Spencer,et al.  A STUDY OF SPONTANEOUS SPINDLE WAVES IN SENSORIMOTOR CORTEX OF CAT , 1961 .

[86]  M. Ferrara,et al.  Sleep spindles: an overview. , 2003, Sleep medicine reviews.

[87]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[88]  E. van Luijtelaar,et al.  Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats , 2003, Behavior genetics.

[89]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[90]  C. Gottesmann,et al.  Study of cortical spindles during sleep in the rat , 1978, Brain Research Bulletin.

[91]  D. Contreras,et al.  Synchronized sleep oscillations and their paroxysmal developments , 1994, Trends in Neurosciences.

[92]  Evgenia Sitnikova,et al.  Thalamo-cortical mechanisms of sleep spindles and spike–wave discharges in rat model of absence epilepsy (a review) , 2010, Epilepsy Research.

[93]  Piotr J. Durka,et al.  High resolution parametric description of slow wave sleep , 2005, Journal of Neuroscience Methods.

[94]  Giovanni Sparacino,et al.  A wavelet Methodology for EEG Time-frequency Analysis in a Time Discrimination Task , 2009 .

[95]  U. Rajendra Acharya,et al.  Entropies for detection of epilepsy in EEG , 2005, Comput. Methods Programs Biomed..

[96]  Luca Bonfiglio,et al.  Blink-related delta oscillations in the resting-state EEG: A wavelet analysis , 2009, Neuroscience Letters.

[97]  P. Halász How Sleep Activates Epileptic Networks? , 2013, Epilepsy research and treatment.

[98]  G. van Luijtelaar,et al.  Some peculiarities of time–frequency dynamics of spike–wave discharges in humans and rats , 2007, Clinical Neurophysiology.

[99]  F. Dreifuss,et al.  The effect of sleep on spike‐wave discharges in absence seizures , 1973, Neurology.

[100]  A. Lüthi,et al.  Sleep Spindles: Mechanisms and Functions. , 2019, Physiological reviews.

[101]  A. Coenen,et al.  Two types of electrocortical paroxysms in an inbred strain of rats , 1986, Neuroscience Letters.

[102]  Roberto Brunelli,et al.  Template Matching Techniques in Computer Vision: Theory and Practice , 2009 .

[103]  Mohammad Teshnehlab,et al.  Feature Extraction and Classification of EEG Signals Using Wavelet Transform, SVM and Artificial Neural Networks for Brain Computer Interfaces , 2009, 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing.

[104]  John R. Huguenard,et al.  Thalamic synchrony and dynamic regulation of global forebrain oscillations , 2007, Trends in Neurosciences.

[105]  Laura B Ray,et al.  Validating an automated sleep spindle detection algorithm using an individualized approach , 2010, Journal of sleep research.

[106]  Ingrid E. Scheffer,et al.  Electroclinical features of absence seizures in sleep , 2011, Epilepsy Research.

[107]  P Kellaway,et al.  Sleep and Epilepsy , 1985, Epilepsia.

[108]  A. Rechtschaffen,et al.  A manual of standardized terminology, technique and scoring system for sleep stages of human subjects , 1968 .

[109]  A. Hramov,et al.  Rhythmic activity in EEG and sleep in rats with absence epilepsy , 2016, Brain Research Bulletin.

[110]  E. Sitnikova Sleep spindles in rats with absence epilepsy , 2017 .

[111]  János Körmendi,et al.  The individual adjustment method of sleep spindle analysis: Methodological improvements and roots in the fingerprint paradigm , 2009, Journal of Neuroscience Methods.

[112]  Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy , 2011, Brain Research.

[113]  S. Perrey Brain activation associated with eccentric movement: A narrative review of the literature , 2018, European journal of sport science.

[114]  Alexander E. Hramov,et al.  Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats , 2014, Neuroscience journal.

[115]  Péter Halász,et al.  New vistas and views in the concept of generalized epilepsies. , 2009, Ideggyogyaszati szemle.

[116]  Robin H. A. Ras,et al.  Water and Blood Repellent Flexible Tubes , 2017, Scientific Reports.

[117]  Gerald Kaiser,et al.  A Friendly Guide to Wavelets , 1994 .

[118]  G Pfurtscheller,et al.  Using time-dependent neural networks for EEG classification. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[119]  Stefano Boccaletti,et al.  Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. , 2017, Physical review. E.

[120]  Josefina Gutiérrez-Martínez,et al.  Neuroprostheses: Significance in Gait Rehabilitation , 2018 .

[121]  Jinbo Sun,et al.  Sleep spindle detection based on non-experts: A validation study , 2017, PloS one.

[122]  Vladimir A. Maksimenko,et al.  Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models , 2016, Journal of Neuroscience Methods.

[123]  Tzyy-Ping Jung,et al.  High-speed spelling with a noninvasive brain–computer interface , 2015, Proceedings of the National Academy of Sciences.

[124]  V. Blatov,et al.  Network topological model of reconstructive solid-state transformations , 2019, Scientific Reports.

[125]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[126]  Gilles van Luijtelaar,et al.  Dynamics of networks during absence seizure's on- and offset in rodents and man , 2015, Front. Physiol..

[127]  Massimo Avoli,et al.  Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy , 1982, Experimental Neurology.

[128]  A. Schulze-Bonhage,et al.  Joining the benefits: Combining epileptic seizure prediction methods , 2010, Epilepsia.

[129]  T. Sejnowski,et al.  Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations , 2001 .

[130]  Armen R. Sargsyan,et al.  A universal automated tool for reliable detection of seizures in rodent models of acquired and genetic epilepsy , 2019, Epilepsia.

[131]  Epilepsy: Implantable device advises patients with epilepsy of seizure likelihood , 2013, Nature Reviews Neurology.

[132]  Edouard Hirsch,et al.  ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[133]  Jan-Mathijs Schoffelen,et al.  Peri-ictal network dynamics of spike-wave discharges: Phase and spectral characteristics , 2013, Experimental Neurology.

[134]  G. van Luijtelaar,et al.  Progress and outlooks in a genetic absence epilepsy model (WAG/Rij). , 2014, Current medicinal chemistry.

[135]  A. Loomis,et al.  FURTHER OBSERVATIONS ON THE POTENTIAL RHYTHMS OF THE CEREBRAL CORTEX DURING SLEEP. , 1935, Science.

[136]  H. Adeli,et al.  Analysis of EEG records in an epileptic patient using wavelet transform , 2003, Journal of Neuroscience Methods.

[137]  M. Salganicoff,et al.  Unsupervised waveform classification for multi-neuron recordings: a real-time, software-based system. I. Algorithms and implementation , 1988, Journal of Neuroscience Methods.

[138]  A. Lüthi,et al.  Manipulating sleep spindles – expanding views on sleep, memory, and disease , 2013, Trends in Neurosciences.