Foundations of DC plasma sources
暂无分享,去创建一个
[1] J. Lawler,et al. Optogalvanic measurements of gas temperature in the cathode fall , 1985 .
[2] C. Minnis,et al. Moving Striations , 1935, Nature.
[3] W. Eckstein,et al. Tridyn-binary collision simulation of atomic collisions and dynamic composition changes in solids , 1988 .
[4] A. Anders. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS) , 2017 .
[5] Michael Wright,et al. Design advances and applications of the rotatable cylindrical magnetron , 1986 .
[6] G. Kroesen,et al. Measurements of electric-field strengths in ionization fronts during breakdown. , 2007, Physical review letters.
[7] N. Sadeghi,et al. Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen , 1994 .
[8] H. G. Slottow,et al. Plasma displays , 1976, IEEE Transactions on Electron Devices.
[9] L. Pekárek,et al. Theory of moving striations in plasma of D-C discharge I. Basic equation and its general solution , 1962 .
[10] E. Wallin,et al. Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar∕O2 mixtures , 2006 .
[11] N. N. Petrov,et al. Reviews of Topical Problems: Excitation of Electrons in Solids by Relatively Slow Atomic Particles , 1967 .
[12] Lorraine Eden,et al. Introduction and Overview , 2005 .
[13] V. Lisovskiy,et al. Low-pressure gas breakdown in uniform dc electric field , 2000 .
[14] J. Thornton. Magnetron sputtering: basic physics and application to cylindrical magnetrons , 1978 .
[15] H. Oechsner. Sputtering—a review of some recent experimental and theoretical aspects , 1975 .
[16] Iu. P. Raizer. Gas Discharge Physics , 1991 .
[17] A. Phelps,et al. Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons , 1999 .
[18] W. Graham,et al. Electrical breakdown in water vapor. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] R. Mavrodineanu. Hollow Cathode Discharges: Analytical Applications. , 1984, Journal of research of the National Bureau of Standards.
[20] R. K. Waits. Planar magnetron sputtering , 1978 .
[21] F. M. Penning. Ein neues manometer für niedrige gasdrucke, insbesondere zwischen l0−3 und 10−5 mm , 1937 .
[22] Lowell S. Brown,et al. Geonium theory: Physics of a single electron or ion in a Penning trap , 1986 .
[23] J. Broekaert. Optical Emission Spectrometry with Glow Discharges , 2003 .
[24] Doughty,et al. Laser optogalvanic and fluorescence studies of the cathode region of a glow discharge. , 1988, Physical review. A, General physics.
[25] K. Schoenbach,et al. Self-organization in cathode boundary layer microdischarges , 2004 .
[26] M. E. Pillow. A critical review of spectral and related physical properties of the hollow cathode discharge , 1981 .
[27] D. Marić,et al. Breakdown and dc discharge in low-pressure water vapour , 2015 .
[28] Y. Yamamura,et al. ENERGY DEPENDENCE OF ION-INDUCED SPUTTERING YIELDS FROM MONATOMIC SOLIDS AT NORMAL INCIDENCE , 1996 .
[29] Michael Grüninger,et al. Introduction , 2002, CACM.
[30] A. R. Trindade,et al. Hollow Cathode Arcs , 1974 .
[31] J. L. Vossen,et al. II-1 – Glow Discharge Sputter Deposition , 1978 .
[32] R. K. Marcus,et al. Radio frequency powered glow discharge atomization/ionization source for solids mass spectrometry , 1989 .
[33] P. Sigmund. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .
[34] E. Hooper. A Review of Reflex and Penning Discharges , 1970 .
[35] C. D. Child,et al. Discharge From Hot Cao , 1911 .
[36] E. Wagenaars,et al. Pre-breakdown light emission phenomena in low-pressure argon between parabolic electrodes , 2006 .
[37] J. H. Ingold. Nonequilibrium positive column , 1997 .
[38] F. Penning,et al. The Mechanism of Electrical Discharges in Gases of Low Pressure , 1940 .
[39] E. Cawthron. SECONDARY ELECTRON EMISSION FROM SOLID SURFACES BOMBARDED BY MEDIUM ENERGY IONS. , 1971 .
[40] H. Gnaser. Energy and Angular Distributions of Sputtered Species , 2007 .
[41] James Dillon Cobine,et al. Gaseous conductors : theory and engineering applications , 1958 .
[42] R. Baragiola,et al. Ion-induced electron emission from clean metals , 1979 .
[43] W. D. Westwood,et al. Glow discharge sputtering , 1976 .
[44] Busch,et al. Numerical solution of the spatially inhomogeneous Boltzmann equation and verification of the nonlocal approach for an argon plasma. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[45] E. Kay. Impact Evaporation and Thin Film Growth in a Glow Discharge , 1963 .
[46] Satosi Watanabe,et al. Traveling Density Waves in Positive Columns , 1955 .
[47] J. Boeuf. Plasma display panels: physics, recent developments and key issues , 2003 .
[48] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing , 1994 .
[49] William Robert Grove,et al. VII. On the electro-chemical polarity of gases , 1852, Philosophical Transactions of the Royal Society of London.
[50] Z. Donkó,et al. BRIEFCOMMUNICATION: Use of secondary-electron yields determined from breakdown data in cathode-fall models for Ar , 1999 .
[51] V. Lisovskiy,et al. DC breakdown in low-pressure CF4 , 2015 .
[52] Samuel H. Bosch. KINETIC SECONDARY ELECTRON EJECTION FROM MOLYBDENUM BY CESIUM IONS , 1965 .
[53] Z. Šroubek,et al. Kinetic electron emission from solids induced by slow particles , 1991 .
[54] Doughty,et al. Current balance at the surface of a cold cathode. , 1987, Physical Review Letters.
[55] V. Kolobov,et al. Analytic model of the hollow cathode effect , 1995 .
[56] L. Pekárek,et al. IONIZATION WAVES (STRIATIONS) IN A DISCHARGE PLASMA , 1968 .
[57] Vladimir Kolobov,et al. Striations in rare gas plasmas , 2006 .
[58] H. C. Miller. Paschen Curve in Nitrogen , 1963 .
[59] N. Savvides,et al. Charged particle fluxes from planar magnetron sputtering sources , 1986 .
[60] J. Ziegler,et al. SRIM – The stopping and range of ions in matter (2010) , 2010 .
[61] K. Wasa,et al. Low Pressure Sputtering System of the Magnetron Type , 1969 .
[62] A. W. Wright. On the production of transparent metallic film by the electrical discharge in exhausted tubes , 1877, American Journal of Science and Arts.
[63] Irving Langmuir,et al. The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum , 1913 .
[64] J. Pons-Corbeau. Study of emission and sputtering yields in some alloys and oxide by glow discharge optical spectrometry: Quantification of analysis , 1985 .
[65] J. Sellers. Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD , 1998 .
[66] B. Cherrington. Gaseous Electronics and Gas Lasers , 2014 .
[67] A. Phelps. Abnormal glow discharges in Ar: experiments and models , 2001 .
[68] R. Gurney,et al. Electronic Processes in Ionic Crystals , 1964 .
[69] K. L. Chopra,et al. Thin Film Phenomena , 1969 .
[70] I. Bernstein,et al. Electron Energy Distributions in Stationary Discharges , 1954 .
[71] Lewi Tonks,et al. A General Theory of the Plasma of an Arc , 1929 .
[72] S. Brown. Chapter 1 – A Short History of Gaseous Electronics , 1978 .
[73] I. Petrov,et al. Average energy deposited per atom : a universal parameter for describing ion-assisted film growth ? , 1993 .
[74] D. Hasselkamp. Kinetic electron emission from solid surfaces under ion bombardment , 1992 .
[75] T. Nelis,et al. Glow discharge optical emission spectrometry , 2003 .
[76] S. Muhl,et al. The use of hollow cathodes in deposition processes: A critical review , 2015 .
[77] G. Kroesen,et al. Plasma emission imaging of a low-pressure argon breakdown , 2005 .
[78] D. Depla,et al. Sputter Deposition Processes , 2010 .
[79] K. Ashtiani,et al. Ionized physical-vapor deposition using a hollow-cathode magnetron source for advanced metallization , 2000 .
[80] M. W. Thompson. II. The energy spectrum of ejected atoms during the high energy sputtering of gold , 1968 .
[81] M. W. Thompson. Physical mechanisms of sputtering , 1981 .
[82] U. Helmersson,et al. The role of Ohmic heating in dc magnetron sputtering , 2016 .
[83] Thermally Inhomogeneous Plasma Column , 1964 .
[84] D. Depla,et al. Magnetron sputter deposition: Linking discharge voltage with target properties , 2009 .
[85] U. Helmersson,et al. Ionized physical vapor deposition (IPVD): A review of technology and applications , 2006 .
[86] G. K. Wehner,et al. Energy Distribution of Atoms Sputtered from Polycrystalline Metals , 1969 .
[87] D. Uhrlandt,et al. Radially inhomogeneous electron kinetics in the DC column plasma , 1996 .
[88] V. Lisovskiy,et al. The Child-Langmuir collision laws for the cathode sheath of glow discharge in nitrogen , 2014 .
[89] J. Reece Roth,et al. Industrial Plasma Engineering : Volume 1: Principles , 1995 .
[90] Warren De La Rue,et al. IV. Experimental researches on the electric discharge with the chloride of silver battery , 1880, Philosophical Transactions of the Royal Society of London.
[91] L. Tsendin. Electron kinetics in non-uniform glow discharge plasmas , 1995 .
[92] U. Helmersson,et al. High power impulse magnetron sputtering discharge , 2012 .
[93] E. Kay,et al. Efficient Low Pressure Sputtering in a Large Inverted Magnetron Suitable for Film Synthesis , 1965 .
[94] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .
[95] J. H. Ingold. Chapter 2 – Glow Discharges at DC and Low Frequencies , 1978 .
[96] V. Lisovskiy,et al. Child–Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen , 2016 .
[97] M. Benilov. The Child–Langmuir law and analytical theory of collisionless to collision-dominated sheaths , 2009 .
[98] J. Roth. Industrial Plasma Engineering , 1995 .
[99] V. Lisovskiy,et al. Validating the Goldstein–Wehner law for the stratified positive column of dc discharge in an undergraduate laboratory , 2012 .
[100] Warren De La Rue,et al. Experimental Researches on the Electric Discharge with the Chloride of Silver Battery , 1883, Nature.
[101] J. Coburn,et al. Plasma Sources in Analytical Mass Spectrometry , 1981 .
[102] W. O. Hofer,et al. Angular, energy, and mass distribution of sputtered particles , 1991 .
[103] John A. Thornton,et al. II-2 – Cylindrical Magnetron Sputtering , 1978 .
[104] H. F. Fruth. Cathode sputtering — A commercial application , 1932 .
[105] R. Behrisch,et al. Sputtering by Particle Bombardment III , 1981 .
[106] R. N. Jackson,et al. Gas Discharge Displays: A Critical Review , 1974 .
[107] W. Eckstein,et al. Tridyn — A TRIM simulation code including dynamic composition changes , 1984 .
[108] Gordon Francis,et al. The Glow Discharge at Low Pressure , 1956 .
[109] G. Wehner,et al. Sputtering of Dielectrics by High‐Frequency Fields , 1962 .
[110] J. H. Ingold,et al. Particle in cell simulations of low pressure small radius positive column discharges , 2001 .
[111] J. Biersack,et al. A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .
[112] Jon Tomas Gudmundsson,et al. The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool , 2010 .
[113] L. Alves. Fluid modelling of the positive column of direct-current glow discharges , 2007 .
[114] Klaus Goedicke,et al. Pulsed magnetron sputter technology , 1993 .
[115] W. Grimm. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse , 1968 .
[116] M. Withford,et al. Investigation of the evolution of trace impurities from a newly constructed copper vapour laser , 1996 .
[117] Wolfgang Eckstein,et al. Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies , 2007 .