Balancing the lifting values to improve the numerical stability of polyhedral homotopy continuation methods
暂无分享,去创建一个
Jan Verschelde | Tangan Gao | T. Y. Li | Mengnien Wu | Tien-Yien Li | J. Verschelde | T. Gao | Mengnien Wu
[1] John F. Canny,et al. Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..
[2] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[3] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[4] J. Canny,et al. Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .
[5] J. Verschelde,et al. Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .
[6] Bernd Sturmfels,et al. On the Newton Polytope of the Resultant , 1994 .
[7] Charles W. Wampler,et al. Solving a Planar Four-Bar Design Problem Using Continuation , 1990 .
[8] Ronald Cools,et al. Mixed-volume computation by dynamic lifting applied to polynomial system solving , 1996, Discret. Comput. Geom..
[9] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[10] Tien Yien Li,et al. Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.
[11] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[12] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[13] Jan Verschelde,et al. Enumerating Regular Mixed-Cell Configurations , 1999, Discret. Comput. Geom..
[14] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.