RIGOROUS DERIVATION OF MULTIVALLEY HYDRODYNAMIC CONSERVATION EQUATIONS IN THE SINGLE-ELECTRON-GAS APPROXIMATION

Multivalley hydrodynamic transport equations in the single‐electron‐gas approximation are rigorously derived for spherical and parabolic energy bands from the first three moments of the Boltzmann transport equation for describing macroscopic conservation of particles, momentum, and energy for electrons in a multiple‐band semiconductor. Two different carrier temperature parameters appear in the set of multivalley macroscopic conservation equations. In the single‐electron‐gas approximation, it is shown that the electron temperature for macroscopic energy conservation generally differs from the electron temperature for macroscopic momentum conservation. Additionally, a new macroscopic transport parameter representing the thermal potential heat flux appears in the multivalley energy conservation equation. This parameter, however, vanishes when intervalley carrier transfer does not occur.

[1]  Paul Bellan,et al.  Fundamentals of Plasma Physics , 2006 .

[2]  Tahui Wang,et al.  Numerical analysis of nonequilibrium electron transport in AlGaAs/InGaAs/GaAs pseudomorphic MODFETs , 1990 .

[3]  R. A. Stewart,et al.  A fully nonparabolic hydrodynamic model for describing hot electron transport in GaAs , 1990 .

[4]  P. A. Blakey,et al.  An assessment of approximate nonstationary charge transport models used for GaAs device modeling , 1989 .

[5]  Y.-K. Feng,et al.  Simulation of submicrometer GaAs MESFET's using a full dynamic transport model , 1988 .

[6]  G. Salmer,et al.  Two-dimensional simulation of submicrometer GaAs MESFETs: surface effects and optimization of recessed gate structures , 1988 .

[7]  Tatsuo Itoh,et al.  Inverted-gate field-effect transistors: novel high-frequency structures , 1988 .

[8]  Robert J. Trew,et al.  Hydrodynamic hot-electron transport model with Monte Carlo-generated transport parameters , 1988 .

[9]  T. Itoh,et al.  Two-dimensional numerical simulation of short-gate-length gaAs MESFETs and application to the travelling gunn domain phenomenon , 1988 .

[10]  C. Snowden,et al.  Two-dimensional hot-electron models for short-gate-length GaAs MESFET's , 1987, IEEE Transactions on Electron Devices.

[11]  Jeffrey Frey,et al.  AN EFFICIENT TECHNIQUE FOR TWO‐DIMENSIONAL SIMULATION OF VELOCITY OVERSHOOT EFFECTS IN Si AND GaAs DEVICES , 1982 .

[12]  Yong-Hoon Yun,et al.  A temperature model for the GaAs MESFET , 1981, IEEE Transactions on Electron Devices.

[13]  J. Frey,et al.  Diffusion effects and "Ballistic transport" , 1981, IEEE Transactions on Electron Devices.

[14]  E. Constant,et al.  Determination of transient regime of hot carriers in semiconductors, using the relaxation time approximations , 1981 .

[15]  E. Constant,et al.  Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FET's , 1980, IEEE Transactions on Electron Devices.

[16]  J. G. Ruch,et al.  Electron dynamics in short channel field-effect transistors , 1972 .

[17]  G. Salmer,et al.  MODFET 2-D hydrodynamic energy modeling: optimization of subquarter-micron-gate structures , 1990 .

[18]  M. Shur,et al.  Near ballistic electron transport in GaAs devices at 77°K , 1981 .

[19]  E. Constant,et al.  Modeling of a submicrometer gate field‐effect transistor including effects of nonstationary electron dynamics , 1980 .

[20]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .