Suppression of irradiation hardening in nanoscale V/Ag multilayers

Abstract Nanoindentation was used to measure hardness before and after room temperature He ion implantation on sputter-deposited V/Ag multilayers of different layer thickness as well as pure Ag and V. The radiation-induced hardening was found to decrease with decreasing individual layer thickness. No change in hardness after implantation was measured in multilayers with a layer thickness of less than 10 nm, which is of the order of the average spacing of He bubbles. The pure V films exhibit significant hardening due to a dense distribution of 0.8 nm diameter He bubbles, but in the nanocrystalline pure Ag films bubbles grow to a diameter of approximately 20 nm and become ineffective in causing hardening. A model describing layer-thickness-dependent radiation hardening in multilayers was developed by extending the Friedel model to take into account the layer thickness and the He bubble spacing.

[1]  D. Follstaedt,et al.  Hardening by bubbles in He-implanted Ni , 2008 .

[2]  M. Nastasi,et al.  Nucleation and growth of bubbles in He ion-implanted V/Ag multilayers , 2011 .

[3]  L. Shao,et al.  Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates , 2009 .

[4]  J. Evans,et al.  Direct evidence for helium bubble growth in molybdenum by the mechanism of loop punching , 1981 .

[5]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[6]  L. Samuels,et al.  An experimental investigation of the deformed zone associated with indentation hardness impressions , 1957 .

[7]  J. Hirth,et al.  On the role of weak interfaces in blocking slip in nanoscale layered composites , 2006 .

[8]  H. Trinkaus,et al.  Radiation hardening revisited: role of intracascade clustering , 1997 .

[9]  Wu,et al.  High-pressure phase diagram and equation of state of solid helium from single-crystal x-ray diffraction to 23.3 GPa. , 1988, Physical review letters.

[10]  C. Kittel Introduction to solid state physics , 1954 .

[11]  M. Grimsditch,et al.  Elastic Properties and Density of Helium up to 20 GPa , 1986 .

[12]  R. Hoagland,et al.  Thermal stability of self-supported nanolayered Cu/Nb films , 2004 .

[13]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[14]  D. Bacon,et al.  Atomic-scale mechanisms of void hardening in bcc and fcc metals , 2010 .

[15]  R. Hoagland,et al.  Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films , 2005 .

[16]  Gary S. Was,et al.  Fundamentals of radiation materials science , 2007 .

[17]  H. Trinkaus,et al.  Conditions for dislocation loop punching by helium bubbles , 1984 .

[18]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[19]  J. Hirth,et al.  Influence of surface steps on glide of threading dislocations during layer growth , 2004 .

[20]  M. Nastasi,et al.  Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers , 2003 .

[21]  U. F. Kocks,et al.  The effect of dislocation self-interaction on the Orowan stress , 1973 .

[22]  K. Yu-zhang,et al.  Transmission electron microscopy investigation of the atomic structure of interfaces in nanoscale Cu–Nb multilayers , 2008 .

[23]  Gary S. Was,et al.  Fundamentals of Radiation Materials Science: Metals and Alloys , 2007 .

[24]  D. Bacon,et al.  Atomic modelling of strengthening mechanisms due to voids and copper precipitates in α-iron , 2003 .

[25]  J. Stubbins Void swelling and radiation-induced phase transformation in high purity Fe-Ni-Cr alloys , 1986 .

[26]  U. F. Kocks The theory of an obstacle-controlled yield strength—Report after an international workshop , 1977 .

[27]  Nan Li,et al.  Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles , 2011 .

[28]  P. Anderson,et al.  Dislocation-based modeling of the mechanical behavior of epitaxial metallic multilayer thin films , 2005 .

[29]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[30]  M. Makin The obstacles responsible for the hardening of neutron irradiated copper crystals , 1968 .

[31]  L. Shao,et al.  He ion irradiation damage in Fe/W nanolayer films , 2009 .

[32]  M. Demkowicz,et al.  The radiation damage tolerance of ultra-high strength nanolayered composites , 2007 .

[33]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[34]  M. Demkowicz,et al.  Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. , 2008, Physical review letters.

[35]  B. Singh Atomic displacements and defect accumulation during irradiation with energetic particles , 1999 .

[36]  T. D. Rubia,et al.  Irradiation-Induced Defect Production in Elemental Metals and Semiconductors: A Review of Recent Molecular Dynamics Studies , 1996 .

[37]  A. Misra,et al.  Structural metals at extremes , 2010 .

[38]  P. Hirsch,et al.  Elastic interaction between prismatic dislocation loops and straight dislocations , 1964 .

[39]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[40]  P. Anderson,et al.  Dislocation-Based Deformation Mechanisms in Metallic Nanolaminates , 1999 .

[41]  Lyndon Edwards,et al.  Greater tolerance for nuclear materials. , 2008, Nature materials.

[42]  N. Baluc,et al.  The microstructure and associated tensile properties of irradiated fcc and bcc metals , 2000 .

[43]  R. Fleischer,et al.  Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals , 1962 .

[44]  D. Hoelzer,et al.  Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT , 2009 .

[45]  G. E. Lucas,et al.  Recent progress in understanding reactor pressure vessel steel embrittlement , 1998 .

[46]  J. Kollár,et al.  The surface energy of metals , 1998 .

[47]  M. Jenkins,et al.  Characterisation of Radiation Damage by Transmission Electron Microscopy , 2000 .

[48]  A. Misra,et al.  Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers , 2010 .

[49]  R. Newman,et al.  The interaction of vacancies with dislocations , 1962 .

[50]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[51]  Amit Misra,et al.  Plastic flow stability of metallic nanolaminate composites , 2007 .

[52]  G. Odette,et al.  The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels , 1991 .

[53]  Donald R. Olander,et al.  Fundamental Aspects of Nuclear Reactor Fuel Elements , 1976 .

[54]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[55]  Amit Misra,et al.  Arrest of He bubble growth in Cu–Nb multilayer nanocomposites , 2008 .

[56]  R. Newman,et al.  The kinetics of migration of point defects to dislocations , 1970 .

[57]  V. Gerold,et al.  On the Critical Resolved Shear Stress of Solid Solutions Containing Coherent Precipitates , 1966, August 1, 1966.

[58]  P. Goodhew,et al.  Helium bubble behaviour in b. c. c. metals below 0.65Tm , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[59]  S. Zinkle,et al.  Operating temperature windows for fusion reactor structural materials , 2000 .

[60]  H. Trinkaus,et al.  Helium accumulation in metals during irradiation – where do we stand? , 2003 .

[61]  A. Sergueeva,et al.  Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials , 2004 .